
Ben-Gurion University of the Negev

The Faculty of Natural Sciences

The Department of Computer Science

A Normalized Edit Distance on Finite and Infinite

Words

Thesis submitted in partial fulfillment of the requirements

for the Master of Sciences degree

Joshua Grogin

Under the supervision of Prof. Dana Fisman and Prof. Gera Weiss

February 2022

Ben-Gurion University of the Negev

The Faculty of Natural Sciences

The Department of Computer Science

A Normalized Edit Distance on Finite and Infinite

Words

Thesis submitted in partial fulfillment of the requirements

for the Master of Sciences degree

Joshua Grogin

Under the supervision of Prof. Dana Fisman and Prof. Gera Weiss

Signature of student: Date:

Signature of supervisor I: Date:

Signature of supervisor II: Date:

Signature of chairperson of the

committee for graduate studies: Date:

February 2022

i

A Normalized Edit Distance on Finite and Infinite

Words

Joshua Grogin

Master of Sciences Thesis

Ben-Gurion University of the Negev

2022

Abstract

Reactive systems [HP84] are computer systems that maintain a continuous interaction

with the environment in which they execute. Examples of such systems are hardware

devices embedded in cars or air-crafts, device drivers, operating systems and commu-

nication protocols. Such systems usually involve complex and challenging implemen-

tations which solve real-time constraints and concurrent programming. To ensure the

safety and reliability of such critical systems, many resources are invested into verify-

ing correctness of these critical systems. Formal verification is a common method of

verifying whether a given system satisfies its requirements (a given property). Usually

the system is converted into a simpler state machine (transition system) or (or sym-

bolic representation of it) and the properties are represented in some temporal logic (a

logic that reasons on truth values of propositions over a timeline). Verification meth-

ods such as model checking can mathematically prove whether the system meets its

ii

requirements. Due to the nature of reactive systems which represent non-terminating

systems, infinite words are usually used to describe runs of such systems. Classically,

temporal logics output a Boolean value, that is, the system either satisfies a property

or not. The classical approach is well studied but in reality, satisfaction is more of

a spectrum. For instance, an aircraft’s gyroscope must be accurate at all times but

if it must fail, we would rather that happen at a high altitude rather near potential

obstacles. Naturally, the concept of distance opens the possibility of asking further

questions. For example, systems which can tolerate many errors are preferable over

systems which collapse when small disturbances are introduced. Suppose for simplicity

a run is represented by a binary string, then the tolerance question amounts to asking

what is the minimal number of bit flips and/or bit losses that would render an accept-

ing string rejecting. If a distance measure between strings is available the question can

be articulated as “is there a run that is closer than a given threshold to not meeting

the requirements?”. In other words, we would like the distance to measure how much

“disturbance” in a word we can afford without risking non-compliance. To answer such

a question for runs of reactive systems, we need a distance measure between infinite

words.

This thesis presents a metric for quantifying distances between infinite words that

reflects deviations between words (runs) of implementation and words (runs) specified

in the requirements. Specifically, we extend a normalized version [MV93] of the known

edit distance (henceforth, ned) to a normalized edit distance on infinite words, which

we term ω-ned. We provide algorithms for calculating distances between periodic

words and between ω-regular languages. The latter can be used, for example, to

measure the distance of an implementation from the set of undesired words, which gives

a measure of the robustness of the implementation. It can also be used to measure the

iii

worst-case deviation of an implementation from the requirements.

During the course of our research we were surprised to realize that the question whether

ned is a metric in the uniform case is still open, and that various other normalized

version of the edit distance were proposed to bypass this gap. Playing with the other

normalized edit distance measures we concluded that ned is more natural in the case of

infinite words and managed to prove it satisfies the triangle inequality (the requirement

missing to prove it is a metric). Part I discusses the extension to infinite words and

the algorithms for calculating distance, and Part II provides the proof of ned being a

metric.

iv

Acknowledgements

I would like to thank my advisors (and teachers), Dana Fisman and Gera Weies, first

for introducing me to the wonderful world of formal-methods, Dana - giving me a strong

theoretical background in Automata and Logic on Infinite Objects, Gere - introducing

me to the practical uses and implications of Formal methods and Model checking, and

for accepting me as a Master student and guiding me through this thesis. We spent

endless time, correcting mistakes and reducing our questions to interesting and fun

riddles. Most of all your patients along with passion really let me grow and learn while

having fun doing so. Working with you really influenced my career both as a researcher

and as an engineer.

I also want to thank Oded Margalit, for helping us crack the triangle inequality “riddle”

and for your interesting input shared with Gera.

I have to thank Ben Gurion University for their wonderful preparatory engineering

program, which gave me an opportunity and all the tools I need to express my love

and passion for science.

Last but not least, I want to thank my immediate family for endless support, belief,

love and faith through good and tough times. My mother for her magical way of raising

us in the most creative environment, letting us think for our own, creating passionate

critical thinking adults and of course an unforgettable childhood.

v

Contents

1 Introduction 1

1.1 Formal verification . 1

1.2 Edit distance . 4

1.3 Contributions . 6

I Normalized edit distance on infinite words 8

2 Preliminaries 9

2.1 Notations and definitions . 9

2.2 Facts . 14

3 A Normalized Edit Distance for Infinite Words 19

3.1 Extension to infinite words . 23

3.1.1 ω-ned is a metric . 24

3.2 The Case of Ultimately Periodic Words 28

vi

4 Computing ω-ned for Languages of Infinite Words 37

4.1 Computing ω-ned for ultimately periodic words 38

4.2 Computing ned for regular languages 39

4.3 Computing ω-ned for Regular ω-Languages 42

4.4 Enough to consider two cycles . 44

4.5 Computing µ∗ . 47

4.6 Showing ω-ned(L1, L2) = µ∗ . 51

4.7 The algorithm . 59

5 Reflecting on the transient part 63

II Normalized edit distance on finite words 69

6 The Normalized Edit Distance with Uniform Operation Costs is a

Metric 70

6.1 Representation of edit paths . 70

6.2 Normalized edit distance definition . 73

6.3 Proof of metric . 74

6.3.1 A Proof of the Triangle Inequality 75

6.3.2 Properties of fractions . 89

6.4 Properties of the various normalized edit distance functions 90

6.4.1 Other edit distance functions 91

vii

6.4.2 Comparison to other edit distance functions 93

7 Discussion and Conclusions 100

Bibliography 102

1

Chapter 1

Introduction

1.1 Formal verification

Our dependency on computer systems is growing in an unprecedented rate, we have

come to a point where entire medical and banking operations rely on both hardware

and software, to manage transfer and calculate our data, even our day to day ways

of transportation rely on such systems. As we advance in technology, these systems

are becoming increasingly complicated hereby virtually impossible to develop without a

strong need to make sure all the parts are running properly. Failures in critical systems

can lead to catastrophic events impacting the economy or even worse, endangering

human lives. It is an obvious need and obligation to verify our systems and make

sure they are running correctly. Testing is a significant part of any hardware/software

development process, typically creating test cases and running/simulating the system

over the different test cases and making sure we achieve the expected result. Since

exhaustively testing all possible cases becomes infeasible for complicated systems, this

2

approach will report existing errors, but will certainly not find any errors which aren’t in

the set of test cases. Formal methods compliment the traditional testing by exploring

the entire state-space of the system with respect to the specification, hereby either

ensuring the system meets its specification or finding a counterexample. We can use a

mathematical model to represent our system and its behaviour. A fascinating and yet

confusing aspect of this approach, is that we are able to verify our system meets our

specification without actually running our system, that is we prove our system is safe

in contrast to testing our system on a subset of inputs.

The model checking problem asks, given a system and a temporal logic formula (the

specification) [Pnu77, EF06], whether the system obeys the formula. A common

method is to transform both the system and its specification into automata over infinite

words, reducing the problem to checking whether the set of system traces is contained

in the set of specification traces, or equivalently reduced to the emptiness problem, that

is asking whether there exists a trace in the intersection between our system traces and

the complementary of the property traces [Var95]. If our system doesn’t meet the re-

quirements of the property, we can retrieve the witness trace which doesn’t meet the

specification — a highly attractive quality of this approach since we get a counterex-

ample which can be used as a test case for debugging our system [BK08, CGK+18].

Recent research focuses on quantitative extensions of the model-checking problem

where instead of Boolean acceptance (each word gets map to true or false) we get

a quantitative value (each word gets mapped to a rational value). Naturally the clas-

sical Boolean decision problems (inclusion, universality, equivalence and emptiness)

get a quantitative flavor [CDH10]. Noticeable work of determining distance between

languages uses simulation games, where we can determine the distance of an imple-

3

mentation from the specification. We create a two player game where Player 1 (the

implementation) chooses moves (transitions) and Player 2 (the specification) tries to

match each move. The goal of Player 1 is to prove that simulation does not hold,

by driving the game into a state from which Player 2 cannot match the chosen move.

To make this a quantitative value we add ‘cheat’ transitions with a cost, and we look

at the value of the infinite game. Different distance functions were defined for dif-

ferent purposes and in later papers these sorts of games were refined into implication

games [CHR10, CHR12, CHOV17].

Filliot et al. [FMR+20] introduce three measures of robustness of an implementation

with respect to a specification, all based on weighted transducers [Ber79]. For instance,

they ask what is the minimal threshold ν such that all words up to distance ν are still

contained in the specification.

Tabuada and Neider suggested to extend linear temporal logic (LTL) [Pnu77] to a

5-valued logic, termed robust LTL (rLTL), that gives a mathematical meaning to vi-

olations of an LTL formula [TN16]. Having one truth value corresponding to true

and four truth values corresponding to different shades of false. Since these values are

well ordered, one can compare robustness between implementations even if they fail to

meet their specifications. We hope to define a distance that enhances their intuition,

and is also applicable for all ω-regular languages (due to the fact that LTL is non-

counting [DG08], it does not cover all ω-regular properties, and nor does its extension,

rLTL).

One well studied distance measure is edit distance [Lev66], in this thesis we consider

extensions of the edit distance as a measure of distance between words and languages

4

1.2 Edit distance

The edit distance [Lev66], also called Levenshtein distance, is the minimal number of

insertions, deletions or substitutions of characters needed to edit one word into another.

This is a commonly used measure of the distance between strings. It is used in error

correction, pattern recognition, computational biology, and other fields where the data

is represented by strings.

One limitation of the edit distance is that it does not contain a normalization with

respect to the lengths of the compared strings. For example the edit distance between

the word a and b is 1 where the edit distance between aaaaab and aaab is 2. This limits

its use because, in many applications, having many edit operations when comparing

short strings is more significant than having the same number of edit operations in a

comparison of longer strings, i.e., some applications require a measure that captures

the ‘average’ number of operations per letter, in some sort.

There are several approaches in the literature to add a normalization factor to the edit

distance, as follows. The simplest idea that comes to mind is, of course, to divide the

edit distance by the sum of lengths of the strings. However, Vidal and Marzal [MV93]

showed that this function, termed post-normalized edit distance in [MV93], does not

satisfy the triangle inequality, and thus is not a metric. Dividing by the length of the

minimal or maximal among the strings also breaks the triangle inequality [dlHM08].

The fact that a distance measure is (or is not) a metric allows (resp. prevents) opti-

mizations in many applications. For example, many efficient algorithms for searching

short paths in graphs, such as Dijkstra’s algorithm, make use of the fact that the

underlying distance is a metric.

5

Vidal and Marzal propose thus another function, that we will focus on in this thesis,

that they term the normalized edit distance (ned) and say that this function, “seems

more likely to fulfill the triangle inequality”. They however, show that when the sum

of the costs of deleting and inserting a particular symbol is much smaller than any

other elemental edit cost the function that they suggest is also non-triangular. The

question of whether this distance is triangular in less contrived situations is given only

an empirical answer — “triangular behavior has actually been observed in practice for

the normalized edit distance”. This state of affairs opened the way for attempts to

define edit distance functions that are normalized and satisfy the triangle inequality,

as discussed in the following two paragraphs.

Li and Liu [LL07] proposed an alternative normalization method. They open their

paper by saying that “Although a number of normalized edit distances presented so

far may offer good performance in some applications, none of them can be regarded as

a genuine metric between strings because they do not satisfy the triangle inequality”.

They, then, define a new distance, the generalized edit distance (ged), that is a simple

function of the lengths of the compared strings and the edit distance between them

and show that it is a metric.

De la Higuera and Mic̀o [dlHM08] propose the contextual normalised edit distance

(ced).

Their normalization goes by dividing each edit operation locally by the length of the

string on which it is applied. Specifically, instead of dividing the total edit costs by

the length of the edit path, they propose to divide the cost of each edit operation by

the length of the string at the time of edit. They prove that this is a metric, provide

an efficient approximation procedure for it, and demonstrate its performance in several

6

application domains.

In section 6.3 we prove that ned, the original edit normalization approach proposed by

Vidal and Marzal [MV93] does satisfy the triangle inequality when the cost of all the

edit operations are the same. Since this setup is very common in many applications of

the edit distance, our result gives a simple normalization technique that satisfies the

triangle inequality. While there are other normalized edit distance functions that are a

metric, in particular the two mentioned above (ged and ced), their definition is more

complicated and they capture a different notion of distance than that of ned.

In section 3.1 we extend ned to infinite words and rely on the open question which we

resolve in the second part of this thesis. Another advantage of ned in the context of

formal methods is that its definition allows direct use of a Ptime algorithm proposed

by Filliot et al. [FMR+20] for computing the distance between regular sets of words

represented using finite automata. This is useful since verification tools work with au-

tomata to represent the specification and the program runs, and verification questions

are usually reduced to questions on automata.

1.3 Contributions

We see our main contribution in defining a normalized distance function over infinite

words. First we define a natural extension of the normalized edit distance from finite

words to infinite words. We then prove that in the uniform case (where all the edit costs

are equal) our extension is a metric on infinite words, or more precisely on equivalence

classes of infinite words. Next we provide algorithms that demonstrate how the dis-

tance between two ultimately periodic words can be computed in polynomial time, and

7

how the distance between two regular ω-languages given by non-deterministic Büchi

automata can be computed in polynomial time. When proving that our extended dis-

tance measure is a metric, we came across a question which has been open for more

than 25 year — is the normalized edit distance proposed in [Marzal and Vidal 1993] a

metric when the cost of all the edit operations are the same? Our main contribution

has been submitted to LICS [FGW22]. The proof of the open gap in the literature was

submitted to CPM [FGMW22].

8

Part I

Normalized edit distance on infinite

words

9

Chapter 2

Preliminaries

In the next section we introduce the basic notations and some mathematical claims

which we will utilize in the later proofs.

2.1 Notations and definitions

Sequences, sub-sequences, repetitions, projection We use [i..j] to denote the

set {i, i + 1, . . . , j} for naturals i, j such that i ≤ j. If ρ = (r0, r1, . . .) is a sequence,

we use ρ[i..j] for the sub sequence (ri, ri+1, . . . , rj). Similarly, ρ[i] is used to denote

ri, and ρ[i..] is used to denote the suffix of ρ starting at i. If ρ = (r0, r1, . . . rl−1) is a

sequence, we use ρk for the k-times repetition of ρ and ρω for the infinite repetition

of ρ. Then, if l is the length of ρ, we have that ρω[i] = ρ[i mod l] for every i ∈ N.

Given a tuple t = ⟨a1, a2, . . . , an⟩ we use πi(t) for ai, namely the projection of t on

the i-th coordinate. We extend this notions to sets, sequences and words in the usual

manner, thus, for instance, given a sequence ρ=(⟨σ1, σ
′
1⟩, ⟨σ2, σ

′
2⟩ . . .) we use π1(ρ) for

10

the sequence (σ1, σ2, . . .).

Words, ω-words, ultimately periodic words, rotations An alphabet Σ is a

finite non-empty set of symbols. A finite sequence over Σ is a word and an infinite

sequence over Σ is an ω-word. We use |w| to denote the length of w. Thus, |w| = l if

w = σ0σ1 . . . σl−1 and |w| = ω if w is an ω-word. An ω word w is termed ultimately

periodic if w = uvω for some u ∈ Σ∗ and v ∈ Σ+. The set of finite words is denoted

Σ∗, the set of infinite words is denoted Σω, their union is denoted Σ∞. The set of

ultimately periodic words over Σ is denoted Σup. Let w ∈ Σ∗, we use rot(w) for the

set of words uv such that w = vu, that is, all rotations of the word w.

Automata An automaton is a tuple M = ⟨Σ, Q, q0, δ⟩ consisting of a finite alphabet

Σ of symbols, a finite set Q of states, an initial state q0 and a transition function

δ : Q× Σ→ 2Q. A run of an automaton on a finite word v = σ1σ2 . . . σn is a sequence

of states q0, q1, . . . , qn such that qi+1 ∈ δ(qi, σi+1). A run on an infinite word is defined

similarly and results in an infinite sequence of states. The transition function can be

extended to a function from Q×Σ∗ by defining δ(q, λ) = q and δ(q, σv) = δ(δ(q, σ), v)

for q ∈ Q, a ∈ Σ and v ∈ Σ∗. We often use M(v) as a shorthand for δ(q0, v) and |M | for

the number of states in Q. A transition function is deterministic if δ(q, σ) is a singleton

for every q ∈ Q and a ∈ Σ, in which case we use δ(q, σ) = q′ rather than δ(q, σ) = {q′}.

Acceptors By augmenting an automaton with an acceptance condition α, obtaining

a tuple ⟨Σ, Q, q0, δ, α⟩, we get an acceptor, a machine that accepts some words and

rejects others. An acceptor accepts a word, if one of the runs on that word is accepting.

For finite words the acceptance condition is a set F ⊆ Q and a run on v is accepting

11

if it ends in an accepting state, i.e. if δ(q0, v) ∈ F . For infinite words, there are many

acceptance conditions in the literature, here we mention two: Büchi, the simplest one,

and Muller, the most robust. A Büchi acceptance conditions is also a set F ⊆ Q. A run

of a Büchi automaton is accepting if it visits F infinitely often. A Muller acceptance

condition is a subset F = {F1, . . . , Fk} of subsets of Q. A run of a Muller automaton

is accepting if the set S of states visited infinitely often along the run is exactly one

of the subsets of F . The set of words accepted by an acceptor A is denoted [[A]]. A

language is said to be regular if it is accepted by a DFA. An ω-language is said to be

regular if it is accepted by a deterministic Muller automaton.

Directions and Paths We consider a set D = {(0, 1), (1, 0), (1, 1)} of three direc-

tions. The element (0, 1) denotes the south direction, and is abbreviated as ds; the

element (1, 0) the east direction, and is abbreviated as de; and the element (1, 1) the

south-east direction, and is abbreviated as dse. A sequence ρ ∈ D∞ is call a path.

A South-East Graph, Endpoint A south-east graph is composed of a set V =

[0..n1]× [0..n2] of vertices, for some n1, n2 ∈ N∪{ω}, and a set E = (Es∪Ee∪Ese)∩V 2

of edges, where Es = {(⟨i, j⟩, ⟨i, j + 1⟩)}, Ee = {(⟨i, j⟩, ⟨i + 1, j⟩)}, Ese = {(⟨i, j⟩, ⟨i +

1, j + 1⟩)}. We refer to such a south-east graph as an (n1 × n2)-south-east graph. The

vertices of the graph can be placed on a [0..n1]× [0..n2] grid. We visualize the top-left

position as the (0, 0) point, and each edge in the graph corresponding to a move in one

of the three directions. That is, a step in direction d = (δx, δy) ∈ D moves a token in

point (i, j) to (i+ δx, j+ δy). Therefore, a path ρ = (d0, . . . , dl−1) starting in (0, 0) will

end in
∑l−1

i=0 di where sum is computed at each coordinate separately. Formally, we use

endpoint(ρ) to denote the endpoint of path ρ starting at (0, 0).

12

Figure 2.1: Left: the words graph G = G(abababa, ababba), gray edges weigh 1 and
green edges weigh 0. Right: a path ρ in G with endpoint(ρ) = (6, 6), wgt(ρ) = 2,
len(ρ) = 7, and cost(ρ) = 2/7.

Words Graph Given two words w1, w2 ∈ Σ∞ their corresponding graph G(w1, w2) is

the weighted graph (G, θ) where G = (V,E) is the (|w1| × |w2|)-south-east graph and

θ : E → {0, 1} is defined as follows

θ(e) =

 0 if e=(v, v′) for v=(i, j), w1[i]=w2[j], v
′−v=dse,

1 otherwise

That is, the weight of all east edges and south edges is 1 and a south-east edge

starting at (i, j) will weigh 0 if the letters w1[i] and w2[j] are the same, and it will

weigh 1 otherwise. The word graph G(abababa, ababba) is given in Figure 2.1 (Left).

Edit path A sequence ρ ∈ D∗ is termed an edit path for (w1, w2) if endpoint(ρ) =

(|w1|, |w2|). The weight of ρ, denoted wgt(ρ), is the sum of weights of the corresponding

edges in G(w1, w2). Formally, if ρ = (d0, d1, . . . , dl−1) then the traversed edges are

(e0, e1, . . . , el−1) where ei = (si−1, si+1), s−1 = (0, 0) and si = endpoint(ρ[..i]) for

0 ≤ i < l. Hence, we can define wgt(ρ) =
∑l−1

i=0 θ(ei). We use the notation len(ρ) to

13

denote the length |ρ| of ρ. The cost of ρ, denoted cost(ρ), is defined to be wgt(ρ)
len(ρ)

. See

Figure 2.1 (Right). Intuitively, an edit path for (w1, w2) prescribes how to transform w1

into w2. In particular, a south direction from (i, j) marks that letter w1[i] is deleted,

an east direction from (i, j) marks that letter w2[j] is added, a south-east direction

from (i, j) marks substitution of w1[i] by w2[j], thus it costs nothing if w1[i] = w2[j].

Edit Distance and the Normalized Edit Distance Using the above notations

we provide the formal definitions of the edit distance and the normalized edit distance.

The (not normalized) edit distance of u1, u2 ∈ Σ∗, denoted ed(u1, u2), is the minimum

weight of an edit path for (u1, u2). That is,

ed(u1, u2) = min{wgt(ρ) | ρ is an edit path for (u1, u2)}.

The normalized edit distance of two finite words u1, u2 ∈ Σ∗, denoted ned(u1, u2), is

the minimum cost of an edit path for (u1, u2). That is

ned(w1, w2) = min{cost(ρ) | ρ is an edit path for (u1, u2)}.

Since we are interested in the ned metric, we say that an edit path ρ for (u1, u2) is

optimal if ned(u1, u2) = cost(ρ).

A Metric Space A metric space is an ordered pair (M, d) where M is a set and

d : M×M→ R is a metric, i.e., it satisfies the following for all m1,m2,m3 ∈M:

1. d(m1,m2) = 0 iff m1 = m2;

2. d(m1,m2) = d(m2,m1);

14

3. d(m1,m3) ≤ d(m1,m2) + d(m2,m3).

The first condition is referred to as identity of indiscernibles, the second as symmetry,

the third as the triangle inequality.

Theorem 2.1 [FGMW22] (Σ∗,ned) is a metric space.

Limit functions Given a sequence η = e1, e2, e3, . . . with ei ∈ R, we use the well

known notations of limits for lim sup, lim inf as follows:

Sup(η) = supn∈N en

Inf(η) = infn∈N en

LimSup(η) = lim supn→∞ en = limn→∞ supm≥n em

LimInf(η) = lim infn→∞ en = limn→∞ infm≥n em

Note that for bounded sequences LimSup and LimInf always exist. We can also con-

sider the well known summation functions of infinite sequences for taking the mean

summation LimInfAvg,LimSupAvg or discounted sum Disc

LimSupAvg(η) = lim supn→∞
1
n

∑n
i=1 ei

LimInfAvg(η) = lim infn→∞
1
n

∑n
i=1 ei

Discλ(η) =
∑∞

n=1 λ
nen Where 0 < λ < 1

2.2 Facts

We next prove facts that will be useful in late proofs.

Fact 2.2.1 For every A,A′, B,B′ > 0 we have A+A′

B+B′ ≥ min{A
B
, A′

B′}.

15

Proof. Assume w.l.o.g A
B
≤ A′

B′ . This implies A′ ≥ A·B′

B
. We get that

A
B
= A(B+B′)

B(B+B′)
= A

(B+B′)
+ A·B′

B(B+B′)

≤ A
(B+B′)

+ A′

(B+B′)
= A+A′

B+B′

Fact 2.2.2 Let a1, . . . , an > 0, b1, . . . , bn > 0. Then

∑
1≤i≤n

ai∑
1≤i≤n

bi
≥ min

1≤i≤n

{
ai
bi

}
.

Proof. The proof is by induction on m. The claim clearly holds for m = 1. For m > 1,

let

A =
∑

1≤i≤n−1

ai, B =
∑

1≤i≤n−1

bi, A′ = an, B′ = bn,

By Fact 2.2.1 we have that

∑
1≤i≤n

ai∑
1≤i≤mn

bi
=

A+ A′

B +B′ ≥ min

{
A

B
,
A′

B′

}
.

By the induction hypothesis A
B
≥ min

1≤i≤n−1

{
ai
bi

}
.

Hence, overall we get that

∑
1≤i≤n

ai∑
1≤i≤mn

bi
≥ min

1≤i≤n

{
ai
bi

}
.

□

Fact 2.2.3 Let dt : W2 → R+ and dp : W2 → R+ be two metrics on W. Define

16

dtp : W2 → (R+)
2 as follows

dtp(w1, w2)
def
== (dt(w1, w2), dp(w1, w2))

Then dtp is a metric on W when using the lex order.

Fact 2.2.4 Let du : U2 → R+ and dv : V2 → R+ be two metrics. Define duv : (U ×

V)2 → (R+)
2 as follows

duv(⟨u1, v1⟩, ⟨u2, v2⟩)
def
== (du(u1, u2), dv(v1, v2))

Then duv is a metric on U× V when using the lex order.

The proof of both facts are very similar, so we provide only the second one.

Proof. Let ux, uy, uz ∈ U, vx, vy, vz ∈ V. We show that the three conditions of a metric

are satisfied.

• Identity:

duv(⟨ux, vx⟩, ⟨uy, vy⟩) = (0, 0) ⇐⇒

du(ux, uy) = 0, dv(vx, uv) = 0 ⇐⇒

ux = uy, vx = vy ⇐⇒

⟨ux, vx⟩ = ⟨uy, vy⟩

• Symmetry:

duv(⟨ux, vx⟩, ⟨uy, vy⟩) = (du(ux, uy), dv(vx, vy)) =

17

(du(uy, ux), dv(vy, vx)) = duv(⟨uy, vy⟩, ⟨ux, vx⟩)

• Triangle inequality:

We have that

du(ux, uy) ≤ du(ux, uz) + du(uz, uy)

dv(vx, vy) ≤ dv(vx, vz) + dv(vz, vy)

And therefore

duv(⟨ux, vx⟩, ⟨uy, vy⟩) = (du(ux, uy), dv(vx, vy)) ≤

(du(ux, uz), dv(vx, vz)) + (du(uz, uy), dv(vz, vy)) =

duv(⟨ux, vx⟩, ⟨uz, vz⟩) + duv(⟨uz, vz⟩, ⟨uy, vy⟩)

Fact 2.2.5 Given two sequences of positive numbers a⃗ = (a1, . . . , am) and b⃗ = (b1, . . . , bk)

satisfying
∑m

i=1 ai =
∑k

j=1 bj there exists a matrix P ∈ [0, 1]m×k such that
∑m

i=1 pij =

1 for every 1 ≤ j ≤ k and a⃗ = P · b⃗.

In other words, for all 1 ≤ i ≤ m we have ai =
k∑

j=1

pij · bj.

Proof. Let

x =
m∑
i=1

ai =
k∑

j=1

bj.

Next, for all 1 ≤ i ≤ m, 1 ≤ j ≤ k let:

pij =
ai
x
∈ [0, 1].

18

We get for all 1 ≤ i ≤ m

k∑
j=1

pij · bj =
k∑

j=1

ai
x
· bj =

ai
k∑

j=1

bj

k∑
j=1

bj = ai

and
m∑
i=1

pij =
m∑
i=1

ai
x

=
x

x
= 1

19

Chapter 3

A Normalized Edit Distance for

Infinite Words

In this chapter we present a normalized edit distance for infinite words, in the most nat-

ural way, i.e. the limit of ned for prefixes of the same length. We first discuss possibil-

ities for metrics on infinite words. The most famous distance function on infinite words

is the one on which the Cantor topology is defined, according to which the distance

between w1, w2 ∈ Σω decreases exponentially with the length of the longest common

prefix [HR86]. Formally, using ctd to denote this distance function, ctd(w1, w2) is

zero if w1 = w2 and otherwise it is 2−min{n | w1[..n]̸=w2[..n]} where w[..n] denotes the prefix

of w of length n. Clearly, the intuition behind ctd and the edit distance functions

mentioned above (ed and ned) is very different. We have that ctd(abω, aω) = 1/2

and ctd(baω, aω) = 1 while more edit operations are needed to get from abω to aω than

from baω (in fact, infinitely many edit operations are required in the first case and only

one in the second case).

20

Other commonly used distance functions for infinite words are defined using some

weight function, and some summation function defined on that (see e.g.[CDH10, CHR12]).

This is more similar in spirit to our motivation. We assume, for simplicity, that the

weight function assigns uniform weights as above. Formally, for w1, w2 ∈ Σω we de-

fine their uniform weight difference sequence as η(w1, w2) = e1, e2, . . . where ei = 0 if

w1[i] = w2[i] and ei = 1 otherwise. Further, given an infinite sequence η = e1, e2, e3, . . .

with ei ∈ R the summation functions are defined as follows:

Sup(η) = supn∈N en

Inf(η) = infn∈N en

LimSup(η) = lim supn→∞ en = limn→∞ supm≥n em

LimInf(η) = lim infn→∞ en = limn→∞ infm≥n em

LimSupAvg(η) = lim supn→∞
1
n

∑n
i=1 ei

LimInfAvg(η) = lim infn→∞
1
n

∑n
i=1 ei

Discλ(η) =
∑∞

n=1 λ
nen

For finite words Sum,Min,Max,Avg and Discλ are also used, see e.g., [FMR+20]. Dif-

ferent summation functions are adequate in different situations. For instance, Sup is

used for peak consumption; LimSupAvg, LimInfAvg for average response time or rate

of failures; and Discλ when late failures are less important than early ones.

It is quite clear that Sup, Inf, LimSup, LimInf, and Discλ cannot be used to model

edit distance in the flavor of ed and ned, but let’s take it gradually. Applying Sup to

η(w1, w2) would give 1 if w1 ̸= w2 and 0 otherwise. Applying Inf to η(w1, w2) would give

1 only if w1[i] ̸= w2[i] for every i, i.e., they completely disagree. Clearly, these two are

too coarse to model edit distance. Applying LimSup to η(w1, w2) would give 1 if there

are infinitely many indices i in which w1[i] ̸= w2[i] and 0 otherwise, and LimInf would

21

give 1 if there is i such that w1[j] ̸= w2[j] for every j > i. These are still too coarse

for our purpose. The summation Discλ disregards what happens ad infinitum, or more

precisely gives later events an exponentially smaller weight making them negligible.

Even when considering words that agree on the suffixes, e.g., w1 = aω, w2 = abaω,

w3 = aaabaω we get that Disc 1
2
(η(w1, w2)) = 1/4 and Disc 1

2
(η(w1, w3)) = 1/16 though

both w2 and w3 require one edit operation from w1.

The summation functions closest to what we seek are LimSupAvg and LimInfAvg.

Indeed, if we consider the words w1 = aω and w2 = (aaaab)ω, applying the uniform

weight function η(w1, w2) we obtain the sequence η = (00001)ω since every fifth letter

is different. Thus, LimSupAvg(η) = 1/5 which is consistent with our intuition on the

normalized number of edit operations required to apply to w1 in order to obtain w2.

For the words v1 = c100aω and v2 = d35(aaaab)ω we also get the desired 1/5 by applying

LimSupAvg on η(v1, v2) which is 1100(00001)ω. Indeed, LimSupAvg (and LimInfAvg)

is indifferent to any finite prefix, as we expect the case to be.

Unfortunately, LimSupAvg and LimInfAvg do not always correspond to our intuition of

the normalized number of edits required to get from one word to the other. Consider,

e.g., x1 = (abc)ω and x2 = (acb)ω we have that η(x1, x2) = (011)ω so LimInfAvg is

2/3. But if we consider edit operations, we can transform x1x1 to x2x2 by abcab c 7→

a c bacb to get that ned(x1x1, x2x2)=4/8=1/2, so we expect something similar for the

ω-repetition.

Another issue arises when considering, for example, y1 = (abcd)ω and y2 = (bcda)ω.

The obtained sequence η(y1, y2) is (1)
ω thus LimSupAvg and LimInfAvg will result in

1, meaning the words are as farthest apart from each other, while the number of edits

required to get from y1 to y2 is one, since we can simply drop the first letter of y1 to

22

get y2. Since this is one edit out of infinitely many letters we expect a normalized edit

distance on infinite words to return 0 in this case.

We now turn to discussing the desired criteria from an edit distance on infinite words.

We want it to be normalized in the sense that the distance between two words is in

[0, 1]. We would like it to reflect the number of edits needed in average to get from

one word to the other. In particular, it would be nice if we can find such a metric in

which the distance between (u1)
ω and (u2)

ω would be close to ned(u1, u2). We would

also like it to return zero for two words that have a common infinite suffix.

Do we want to require that the distance between two words is zero if and only if they

have a common suffix? While this makes sense when considering ultimately periodic

words, when we consider arbitrary words, there are more cases where we would like the

distance to be zero. Consider, e.g., w1 = aω and w2 = ba9ba99ba999b · · · . That is, w2

has a in almost all positions but b’s creep in intervals of powers of 10. We do expect the

distance between w1 and w2 to be 0 since the normalized number of required edits is

negligible, in the sense that the necessity for an edit operation diminishes as the word

progresses.

It is worth discussing that the issue in obtaining a distance function that meets the

above criteria using the common summation functions may be in the error model

(weight function) η defined above, which is quite naive and does not allow, for instance,

deletions and insertions. In general, one can work with other error models, and indeed

the literature, in general, allows arbitrary error models, typically encoded using a

transducer [CHR12, FMR+20]. The problem is that once an arbitrary error model is

used, the chances it would be a metric get slimmer (as an example ned is not a metric

when one allows non-uniform costs [MV93]). Thus, the challenge can be seen as finding

23

an error model with which we can prove a given distance function to be a metric (and

meet the above criteria).

While our choice of ignoring finite prefixes has been justified above, in some cases one

would like to distinguish for instance z1 = aω and z2 = bbbaω and z3 = b100aω and

require that the distance between z1 and z2 be smaller than the distance between z1

and z3. In particular, if the words have a common suffix (as is the case for z1, z2, z3),

we would like an edit distance that reflects the normalized number of edit operations

required on the prefix. This requires a formal definition of when the prefix ends.

3.1 Extension to infinite words

Intuitively, it makes sense to define the normalized edit distance for two infinite words

as the limit of ned of their prefixes. Since the limit may not exists, we define two

versions, one using lim inf and one using lim sup as follows.

Definition 3.1.1 (ω-ned,ω-ned) Let w1, w2 ∈ Σω be two infinite words. We define

two notions of a normalized edit distance, as follows:

ω-ned(w1, w2)
def
== lim supi→∞ ned(w1[..i], w2[..i])

ω-ned(w1, w2)
def
== lim infi→∞ ned(w1[..i], w2[..i])

Since for every pair of finite words u1, u2, ned(u1, u2) is bounded (between 0 and 1)

both the ω-ned(w1, w2) and ω-ned(w1, w2) are well defined for every pair w1, w2 of

infinite words.

24

Example 3.1.2

ω-ned(aω, (aaaab)ω) = 1/5

ω-ned(aω, (aaaab)ω) = 1/5

ω-ned(aω, a · b1 · a · b2 · a · b3 · a · b4 · · ·) = 1

ω-ned(aω, a · b1 · a · b2 · a · b3 · a · b4 · · ·) = 1

ω-ned(aω, a1 · b1 · a2 · b2 · a4 · b4 · · ·) = 1/2

ω-ned(aω, a1 · b1 · a2 · b2 · a4 · b4 · · ·) = 1/3

3.1.1 ω-ned is a metric

Recall that for a function to be a distance function it needs to satisfy the three con-

ditions: (i) identity of indiscernibles, (ii) symmetry, and (iii) triangle inequality. Both

ω-ned and ω-ned clearly satisfy the condition of symmetry.

Usually, the most challenging condition is the triangle inequality. We show that

ω-ned(w1, w2) satisfies the triangle inequality using the following claim:

Claim 3.1.3 If d : Σ∗×Σ∗→R+ satisfies the triangle inequality then dω : Σ
ω×Σω→R+

where dω(w1, w2) is defined by lim supi→∞ d(w1[..i], w2[..i]) satisfies the triangle inequal-

ity.

Proof. Let w1, w2, w3 ∈ Σω. We have that

dω(w1, w3) = lim supi→∞ d(w1[..i], w3[..i])

≤ lim supi→∞(d(w1[..i], w2[..i]) + d(w2[..i], w3[..i]))

≤ lim supi→∞ d(w1[..i], w2[..i]) + lim supi→∞ d(w2[..i], w3[..i])

= dω(w1, w2) + dω(w2, w3)

25

where the first inequality holds since d satisfies the triangle inequality and the second

inequality is a property of sum of lim sup of non-negative sequences. □

Corollary 3.1.4 The function ω-ned : Σω ×Σω → [0, 1] satisfies the triangle inequal-

ity.

Note that the second inequality in the proof of Claim 3.1.3 does not hold if we replace

lim sup by lim inf. Therefore, the above reasoning does not apply to ω-ned.

Regarding the condition of identity of indiscernibles we note, that as per the discussion

in the introduction we do want to obtain a distance of 0 for some words w1 ̸= w2. In

other words we want the metric to be defined on equivalence classes of words, so that

the distance between two words is zero if and only if they are in the same equivalence

class.

To define this equivalence relation, let us revisit the examples where a distance of zero

is expected. The first examples considered words that have a common suffix. Indeed

in such pairs of words the number of required operations is finite (can be used to

eliminate both prefixes), and thus negligible compared to the length of infinite words.

The last example was w1 = aω and w2 = ba9ba99ba999b · · · . In this example we view the

number of edits as negligible since the necessity for edit operations diminishes as the

word progresses. In this example the number of required edits decreases exponentially.

Should this be a requirement? What if it decreases quadratically or logarithmically?

Observe that we can create words where the number of edits from aω decreases as slowly

as desired by considering w = (ab)n1(aab)n2(aaab)n3 · · · . The larger n1, n2, n3, . . . are

the slower the number of edits decreases. Still, in all such words it diminishes over the

infinite word and thus we expect the difference from aω to be zero.

26

We therefore define two infinite words w1, w2 to be almost equal, denoted w1≡w2, if

limi→∞ ned(w1[..i], w2[..i]) = 0. Note that words that have a common suffix are almost

equal according to this definition, as are the other discussed examples. With this

definition, ω-ned satisfies the condition of identity of indiscernibles.

Claim 3.1.5 ω-ned(w1, w2) = 0 iff w1≡w2.

Proof. If w1≡w2 then limi→∞ ned(w1[..i], w2[..i]) = 0.

Thus lim supi→∞ ned(w1[..i], w2[..i]) = 0.

Therefore, by definition ω-ned(w1, w2) = 0.

If ω-ned(w1, w2) = 0 then lim supi→∞ d(w1[..i], w2[..i]) = 0.

Since ned(v1, v2) is bounded between 0 and 1, for any v1, v2 ∈ Σ∗, it follows that

lim infi→∞ d(w1[..i], w2[..i]) = 0.

Hence limi→∞ ned(w1[..i], w2[..i]) = 0

implying w1≡w2. □

Thus ω-ned satisfies the three conditions of being a metric. on the space Σω/ ≡.

Theorem 3.6 (Σω/≡, ω-ned) is a metric space.

Observe that this entails that almost equal words can be used interchangeably when it

comes to ω-ned. For ω-ned we suffice with claiming it is ignorant of prefixes.

Claim 3.1.7 For all w1, w2 ∈ Σω, if w′
1 ≡ w1 then ω-ned(w1, w2) = ω-ned(w′

1, w2).

If w′
1 = w1[i0..] for some i0 ≥ 0 then also ω-ned(w1, w2) = ω-ned(w′

1, w2).

Proof. For ω-ned, follows directly from the identity of indiscernibles and from the

27

triangle inequality. For ω-ned:

ω-ned(w1, w2) = lim inf
i→∞

ned(w1[..i], w2[..i])

= lim inf
i→∞

ned(w1[..i0 − 1]w1[i0..i], w
′
2[..i])

= lim inf
i→∞

ned(w′
1[..i+ i0], w

′
2[..i])

= lim inf
i→∞

ned(w′
1[..i], w

′
2[..i])

= ω-ned(w′
1, w

′
2)

The third equality is because an edit path from w1[..i] to w2[..i] can be constructed from

an edit path from w1[i0..i] to w2[..i] by adding i0 delete operations at the beginning of

the path. This means that the weight of the optimal paths cannot differ by more than

i0. Since the lengths of the edit paths grow indefinitely, this difference does not change

the ned at the limit.

The fourth equality follows, similarly, because an edit path from w′
1[..i] to w′

2[..i] can

be constructed from an edit path from w′
1[..i+ i0] w

′
2[..i] by adding i0 deletions at the

end. □

The last two rows of Example 3.1.2 show that the lim inf and lim sup of the ned of the

prefixes may, in general, converge to different numbers. In the next section we show

that if w1 and w2 are ultimately periodic words then both notions converge to the same

number, which can be calculated using ned of the best rotations of the periods (as

formally stated in the sequel).

28

3.2 The Case of Ultimately Periodic Words

We turn to discuss ultimately periodic words. The interest in ultimately periodic words

stems from the fact that (a) they provide a finite representation of an infinite word,

so we can ask whether we can compute ω-ned for such words (b) deterministic finite

state machines generate ultimately periodic words and (c) two regular ω-languages are

equivalent iff they agree on the set of ultimately periodic words.

We show that if w1 and w2 are ultimately periodic words, namely w1 = z1u
ω
1 and

w2 = z2u
ω
2 for some z1, z2 ∈ Σ∗ and u1, u2 ∈ Σ+ then ω-ned(w1, w2) = ω-ned(w1, w2).

Moreover, it equals the normalized-edit distance of the best rotations of u1 with respect

to u2 (as defined next).

Definition 3.2.1 (best rotation) Let u1, u2 ∈ Σ+. Let u′
1 = uω

1 [..n] and u′
2 = uω

2 [..n]

where n is the lowest common multiple of |u1| and |u2|. We say that (v1, v2) is a

best rotation for (u1, u2) if v1 ∈ rot(u′
1), v2 ∈ rot(u′

2) and for every v′1 ∈ rot(u′
1) and

v′2 ∈ rot(u′
2) it holds that ned(v1, v2) ≤ ned(v′1, v

′
2). If (v1, v2) is a best rotation for

some (u1, u2) we say that (v1, v2) are a best rotation pair. We refer to n as the size of

the best rotation.

Theorem 3.2 (ω-ned for ultimately periodic words) Let w1 = z1u
ω
1 and w2 =

z2u
ω
2 . Let (v1, v2) be a best rotation for (u1, u2). Then ω-ned(w1, w2) = ω-ned(w1, w2) =

ned(v1, v2).

The idea of the proof of Theorem 3.2 is as follows. By Claim 3.1.7 it suffices to consider

the case where w1 and w2 are (completely) periodic. Say w1 = yω1 and w2 = yω2 . Assume

that (u1, u2) is a best rotation pair of (y1, y2) of size n. Consider first ned of the prefixes

of uω
1 and uω

2 that are multiples of n. Let ρ be an optimal edit path for (ui
1, u

i
2). Let

29

Figure 3.1: Left: G((acba)3, (abac)3) with an edit path ρ and points s = (2, 1), t = (6, 5)
such that ρ[s..t] (in yellow) fits a 4-square. Right: the path ρ′ = ρs · ρt obtained by
removing from ρ the sub-path ρ[s..t] (and replacing it by a black dot) as in the proof
of Proposition 3.2.3.

ρ∗ be an optimal path of (u1, u2). We show in Proposition 3.2.3 that the cost of ρ is

not less than the cost of (ρ∗)
i, namely the cost of the edit path obtained from ρ∗ by

repeating it i times, which equals the cost of ρ∗. For prefixes that are not multiples of

n, we show in Proposition 3.2.7 that their cost cannot be substantially better or worse

than the cost of ρ∗.

Proposition 3.2.3 Let u1, u2 ∈ Σ+ be a best rotation pair of size n. Let ρ be an

optimal edit path for (ui
1, u

i
2) for some i > 0. Let ρ∗ be an optimal path for (u1, u2).

Then cost(ρ) = cost(ρ∗).

The proof of Proposition 3.2.3 builds on the following proposition, claiming that when

looking at ρ on the words graph G(ui
1, u

i
2), then some infix of ρ fits an n× n square, as

formally stated in Proposition 3.2.4, and illustrated at the LHS of Figure 3.1.

Proposition 3.2.4 Let u1, u2 ∈ Σ+ be a best rotation pair of size n. Let ρ be an

optimal edit path for (ui
1, u

i
2) for some i > 1. Then there exists s and t, 0 ≤ s < t < |ρ|,

30

such that endpoint(ρ[s..t]) = (n, n).

The proof of Proposition 3.2.4 uses the intermediate value proposition over how much

a k × k square drifts from the main diagonal.

Notice that Proposition 3.2.4 guarantees that along an optimal path ρ in the word

graph G(ui
1, u

i
2) for a best rotation pair (u1, u2) of size n there exists two points s and

t such that 0 ≤ s < t < |ρ| and endpoint(ρ[s..t]) = (n, n). In order to prove it, we will

prove a stronger claim (Lemma 3.2.6), that states that for any path (not necessarily

optimal) that ends on some diagonal point (ℓ, ℓ) and any 0 ≤ n ≤ ℓ i.e. not necessarily

a n that divides ℓ (as is the case for n in Proposition 3.2.4 that divides n × i), there

exists such points s and t so that the twice replicated ρ2 fits a square in between s and

t, namely endpoint(ρ2[s..t]) = (n, n).

To prove, Lemma 3.2.6, the strengthening of Proposition 3.2.4 we introduce additional

notations.

Path’s drift Consider a path ρ = d0, d1, . . . , dl starting at (0, 0) and ending in some

point on the diagonal, say (ℓ, ℓ).1 Then endpoint(ρ) =
∑l

i=0 di = (ℓ, ℓ). We would like

to track the distance of the path from the diagonal, as well as the number of steps

taken east or south, where dse is counted towards both. To this aim we associate with

each direction d, a sequence d̃ of one or two elements as follows

d̃
def
==

(1) if d = de i.e. d = (1, 0)

(−1) if d = ds i.e. d = (0, 1)

(0, 0) if d = dse i.e. d = (1, 1).

1Note that l and ℓ need not be the same.

31

Let ρ̂ be the sequence obtained from concatenating d̃0, d̃1, . . . , d̃l. For instance, if

ρ = de, ds, dse, dse then ρ̂ = 1,−1, 0, 0, 0, 0. Note that given ρ ends in (ℓ, ℓ) it must be

that it makes ℓ moves east and ℓ moves south. Therefore ρ̂ must be of length 2ℓ. Let

ρ̂ = d̂0, d̂1, . . . , d̂2ℓ−1 for d̂i ∈ {−1, 0, 1}. Continuing the previous example, we get that

ρ ends in (3, 3), thus ρ̂ is of length 6 and d̂0 = 1, d̂1 = −1, and d̂i = 0 for i ∈ {2, 3, 4, 5}.

We use drift(ρ) for the sum
∑2ℓ−1

i=0 d̂i. Thus drift(ρ) is zero if ρ makes the same number

of south and east steps, it is positive if it makes more steps to the east than the south,

and negative otherwise. Hence, if ρ ends in (ℓ, ℓ), implying it makes the same number

of south and east steps, then drift(ρ) = 0.

An n-square on our path

We claim that if ρ = d0, d1, . . . , dl is a path starting at (0, 0) and ending at (ℓ, ℓ), then

for every 0 ≤ n ≤ ℓ, looking at its twice replicated path ρ2 there must exists two indices

s and t on the path (where 0 ≤ s < t < 2l), such that endpoint(ρ2[s..t]) = (n, n). If

we consider the south-east graph, looking at the path ρ2, this means that we can find

a point s on the path where we can place an n× n square and the path will intersect

the left-top point and right-bottom point of the square (and the portion of the path

within this square will be ρ2[s..t]).

To prove this we consider sub-sequences of ρ̂ω of length 2n. Note that in general, not

all sub-sequences of ρ̂ correspond to a sub-sequence of a path ρ, only those in which

0’s come in consecutive pairs. If we consider an even length sub-sequence of ρ̂, then if

it corresponds to a sub-sequence of ρ then it must be that the number of elements d̂i

that are either 1 or −1 is even. Hence the sum of its d̂i’s is even. Since we consider

sub-sequences of ρ̂2 of length 2n, we define drift2n(m) of an index m on the path ρ

32

as drift(ρ̂ω[m..m+2n−1]), i.e., the drift of the 2n-long sub-sequence of ρ̂ω starting at

index m. We say that index m is legal in ρ̂ if drift2n(m) is even. Thus, an index m is

legal if it corresponds to a sub-sequence of ρ. We will make use of the following lemma

regarding illegal indices.

Lemma 3.2.5 If index m is illegal then

|drift2n(m+1)− drift2n(m)| ≤ 1.

Proof. Let ρ̂ω = d̂0, d̂1, d̂2, By the definition of drift2n we have that

|drift2n(m+1)− drift2n(m)| = |d̂m+2n−1 − d̂m|.

For the premise to be violated, i.e., for |d̂m+2n−1 − d̂m| > 1 to hold, it must be that

either d̂m+2n−1 = 1 and d̂m = −1 or vice versa. But since m is illegal, either d̂m is

zero or d̂m+2n−1 is zero (as otherwise no subsequence of two consecutive zeros breaks).

Contradiction. □

We can now prove the n-square proposition.

Lemma 3.2.6 (n-square) Let ρ = d0, . . . , dl be a path starting at (0, 0) and ending

at (ℓ, ℓ). Then, for every 0 ≤ n ≤ ℓ there exist s and t such that 0 ≤ s ≤ l, s < t < 2l

and

endpoint(ρ2[s..t]) = (n, n).

Proof. Recall that ρ̂ = d̂0d̂1 . . . d̂2ℓ−1. Using the drift2n notation, we have to show

that there exists 0 ≤ s ≤ l, such that drift2n(s) = 0. Indeed, this implies that

endpoint(ρ2[s..t]) = (n, n) where t is the index in ρ corresponding to the s+ 2n index

33

in ρ̂2. Consider the sequence drift2n(0), drift2n(1), . . . , drift2n(2ℓ− 1) and its sum. We

have that
2ℓ−1∑
s=0

drift2n(s) = 2n · drift(ρ) = 0

since each d̂i for 0 ≤ i ≤ 2ℓ − 1 participates in exactly 2n sums on the left-hand side

(because ρ is repeated twice). If drift2n(s) = 0 for every 0 ≤ s ≤ l then the proposition

clearly holds. Otherwise, there must exits 0 ≤ m1 < m2 ≤ 2ℓ− 1 such that drift2n(m1)

is positive and drift2n(m2) is negative or vice versa. If m1 is illegal i.e. drift2n(m1) is

odd, then following Lemma 3.2.5 there must exist an index m′
1 s.t. m1 < m′

1 < m2

and drift2n(m
′
1) is even. Similarly if m2 is illegal, then there must exist an index m′

2

s.t. m1 < m′
2 < m2 and drift2n(m

′
2) is even. Thus, we can assume without loss of

generality that both m1 and m2 are legal.

Let vi = drift2n(i) for m1 ≤ i ≤ m2. And consider the sequence obtained from

vm1 , vm1+1, . . . , vm2 by removing all elements which are odd. Assume this sequence is

a1, a2, . . . , at where ai = vm1 and at = vm2 . Then we have that this sequence satisfies

that ai+1 − ai ∈ {−2, 0, 2}. By the discrete version of the intermediate value [Joh98]

we have that ∃0 ≤ j ≤ t such that aj = 0. □

Now, using Proposition 3.2.4, we can show that the cost of an optimal edit path ρ for

(ui
1, u

i
2) is the same as the cost of ρ∗, an optimal for (u1, u2).

Proof (Proof of Proposition 3.2.3). Clearly, since (ρ∗)
i is an edit path for (ui

1, u
i
2) and

ρ is defined to be optimal for (ui
1, u

i
2) it must hold that cost(ρ) ≤ cost((ρ∗)

i) = cost(ρ∗).

The proof that cost(ρ) ≥ cost(ρ∗) is by induction on i. For i = 1, the path ρ clearly

cannot cost less than the path ρ∗ which is optimal for this dimension.

Consider i > 1. By Proposition 3.2.4 there exists 0 < s < n − 1 and t > s such that

34

endpoint(ρ[s..t]) = (n, n). Let ρs = ρ[..s−1], ρt = ρ[t+1..]. Consider the path ρ′ = ρs ·ρt

obtained by removing the sub-path of ρ from s to t (see Figure 3.1). It is an edit path

for (ui−1
1 , ui−1

2). Thus, by induction hypothesis we have that cost(ρ′) ≥ cost(ρ∗). Since

endpoint(ρ[s..t]) = (n, n) we also have cost(ρ[s..t]) ≥ cost(ρ∗). Note that the cost of ρ

can be computed using its sub-paths ρ[s..t] and ρ′ which combines ρs and ρt. Recall

that the cost of a path is obtained by dividing the weight of the path by its length.

Let l′ = len(ρ′) and d′ = wgt(ρ′). Similarly, let lst = len(ρ[s..t]) and dst = wgt(ρ[s..t]).

Last, let l∗ = len(ρ∗) and d∗ = wgt(ρ∗). We get that

cost(ρ) = wgt(ρ[s..t])+wgt(ρ′)
len(ρ[s..t])+len(ρ′)

= dst+d′

lst+l′

≥ min
{

dst
lst
, d

′

l′

}
≥ min

{
d∗
l∗
, d∗
l∗

}
= d∗

l∗
= cost(ρ∗)

where the first inequality holds by Fact 2.2.2. □

We turn to bound, from above and below, the cost of prefixes that are not multiplication

of n.

Proposition 3.2.7 Let u1, u2 ∈ Σ+ be a best rotation pair of size n. Let m = i · n+ j

for some i > 0 and 0 < j < n and let ρ be an optimal edit path for (uω
1 [..m], uω

2 [..m]).

Let ρ∗ be an optimal path for (u1, u2), and assume d∗ = wgt(ρ∗) and l∗ = len(ρ∗). Then

d∗
l∗
− 2(n−j)

i·n+j
≤ cost(ρ) ≤ d∗+

2j
i

l∗+
2j
i

.

Proof. For the left inequality, consider the path ρ′ = ρ · (ds)n−j · (de)n−j . That is, the

path obtained from ρ by extending it with (n− j) south and (n− j) east steps. Note

that endpoint(ρ′) = ((i+1)n, (i+1)n). It follows from Proposition 3.2.3 that the cost

of ρ′ is at least d∗
l∗
. Thus we have

cost(ρ′) =
wgt(ρ) + 2(n− j)

len(ρ) + 2(n− j)
≥ d∗

l∗

35

From here we get:

wgt(ρ) · l∗ ≥ d∗ · len(ρ) + d∗ · 2(n− j)− l∗ · 2(n− j)

≥ d∗ · len(ρ)− l∗ · 2(n− j)

dividing both sides by l∗ · len(ρ) gives us

wgt(ρ)

len(ρ)
≥ d∗

l∗
− 2(n− j)

len(ρ)
≥ d∗

l∗
− 2(n− j)

i · n+ j

where the last inequality follows from the fact that len(ρ) ≥ i · n+ j.

For the right inequality, consider the path ρ′ = (ρ∗)
i · (ds)j · (de)j. That is, the

path obtained from ρi∗ by extending it with j south and j east steps. Note that

endpoint(ρ′) = (i · n+ j, i · n+ j). Since ρ is optimal we get:

cost(ρ) ≤ cost(ρ′) =
wgt(ρi∗) + 2j

len(ρi∗) + 2j
=

i · d∗ + 2j

i · l∗ + 2j
=

d∗ +
2j
i

l∗ +
2j
i

We are now ready to prove Theorem 3.2 stating that for periodic words, the ω-ned

distance and ω-ned are the same, and equivalent to the ned distance of their best

rotation.

Proof (Proof of Theorem 3.2). Assume that w1 = z1u
ω
1 and w2 = z2u

ω
2 . By Claim 3.1.7

ω-ned(w1, w2) = ω-ned(u1, u2) and ω-ned(w1, w2) = ω-ned(u1, u2). Let (v1, v2) be

the best rotation of (u1, u2) of size n. Let ρ∗ be an optimal path for v1, v2. Let d∗ be

its weight and l∗ its length. Consider ned(v
ω
1 [..i], v

ω
2 [..i]). If i is a multiple of n then by

Proposition 3.2.3 we get that ned(vω1 [..i], v
ω
2 [..i]) = d∗/l∗. If i is not a multiple of n then

by Proposition 3.2.7 we have that limi→∞ ned(vω1 [..i], v
ω
2 [..i]) = d∗/l∗ = ned(v1, v2). □

36

Henceforth, to avoid cluttering, we use ω-ned(w1, w2) as a synonym for ω-ned(w1, w2).

37

Chapter 4

Computing ω-ned for Languages of

Infinite Words

We define the distance between two languages as the minimum distance between two

words in the respective languages (as is common in metrics when extending the distance

between pair of elements in the space to pair of sets in the space). Thus

ω-ned(L1, L2) = inf
w1∈L1,w2∈L2

ω-ned(w1, w2).

In this chapter we investigate the problem of computing ω-ned for regular languages

of infinite words. Two questions that should be answered first, are

(a) how to compute ω-ned for two ultimately periodic words (which we discuss in

section 4.1)

(b) how to compute ned for languages of finite words (which we discuss section 4.2).1

1Obviously, we define ned(L1, L2) = min
w1∈L1,w2∈L2

ned(w1, w2).

38

After discussing these, in section 4.3 we tackle the problem of computing ω-ned for

regular languages of infinite words.

4.1 Computing ω-ned for ultimately periodic words

We summarize first how computation of ned for finite words can be done.

Computing ned for words Computation of ned for two finite words can be done

in Ptime using a dynamic programming algorithm as follows [MV93]. Let w1, w2 be

words of lengths m,n and respectively. Any edit path of size k satisfies max{m,n} ≤

k ≤ m+ n. Thus, we can compute

D(i, j, k) = min

wgt(ρ)

∣∣∣∣∣∣∣
ρ is an edit path for (w1[..i−1], w2[..j−1])

and len(ρ) = k

Therefore

ned(w1, w2) = min
max(m,n)≤k≤m+n

D(m,n, k)

k

and it can be computed in O(m ·n ·min{m,n}), since for k we need m+n−max{m,n}

entries.

Computing ω-ned for ultimately periodic words Let w1 = z1u
ω
1 and w2 = z2u

ω
2 .

Let v1 = uω
1 [..m] and v2 = uω

2 [..m] where m is the lowest common multiple of |u1| and

|u2|.

It follows from Theorem 3.2 that ω-ned(w1, w2) equals a best rotation (v′1, v
′
2) of (v1, v2).

We note that to look for a best rotations it suffices to check only rotations of either v1

39

or v2.

Claim 4.1.1 Let v1, v2 ∈ Σ∗ such that |v1| = |v2|. There exists a best rotation (v′1, v
′
2)

of (v1, v2) where v′2 = v2.

Proof. Let (v′1, v
′
2) be a best rotation of (v1, v2) and let r be the rotation index in v2

i.e.,

v′2 = v2[r..] · v2[..r−1]

Consider the optimal edit path ρ∗ = (d0, . . . , dk). Let i be the index such that

endpoint(ρ∗[..i]) = (x, n− r).

Let ρ = ρ∗[i+1..k] · ρ ∗ [..i]. Then ρ is an edit path for

(v′1[x..n−1]v′1[..x−1], v2)

with cost(ρ) = cost(ρ∗). □

Therefore ω-ned(w1, w2)= min
v′1∈rot(v1)

ned(v′1, v2) which can be computed in O(m4).

Corollary 4.1.2 Let w1, w2 ∈ Σup. Then ω-ned(w1, w2) can be computed in Ptime.

4.2 Computing ned for regular languages

Filiot et al. [FMR+20] have shown that the infimum of the mean of a weighted graph

can be computed in Ptime.

Lemma 4.2.1 ([FMR+20]) Let G = (V,E,W : E → Q≥0) be a weighted graph, and

VI ⊆ V , VF ⊆ F source and target vertices. The infimum of the mean weights of paths

from VI to VF can be computed in Ptime.

40

We can use this result to compute ned of regular languages, by building a weighted

graph that corresponds to the product of two NFAs, where instead of allowing only

transitions where both NFAs read the same letter, we also allow transitions where they

read different letters, and transitions where one reads a letter and the other one does

not (instead it reads ε). Transitions where both read a letter correspond to replace,

where only the first reads a letter to delete and where only the second reads a letter to

insert.

Definition 4.2.2 (Edit Distance Graph of two NFAs) Let Ni = (Σ, Qi, si, δi, Fi)

be a NFA for i ∈ {1, 2}. The edit-distance graph of N1 and N2 is a labeled weighted

graph, denoted Ged(N1,N2) which is defined as follows Ged(N1,N2) = (V, L, E, θ) where

V = Q1×Q2 is the set of vertices; the set of labels is Σε×Σε where Σε = Σ∪ {ε}; the

set of edges E ⊆ V × L× V is given by

E =

(⟨q1, q2⟩, ⟨σ1, σ2⟩, ⟨q′1, q′2⟩)

∣∣∣∣∣∣∣∣∣∣
either σ1 ̸= ε or σ2 ̸= ε

q′i = δi(qi, σi) if σi ̸= ε

q′i = qi if σi = ε

and the weight function θ associates a weight with edge (u, l, u′) ∈ E solely based on l

as follows:

θ(u, l, u′) = θed(l)

where

θed(⟨σ1, σ2⟩) =

0 if σ1 = σ2

1 otherwise

Remark 4.2.3 Note that we could have reduced the number of edges in Ged(N1,N2) to

include for any pair of nodes (q1, q2) and (q′1, q
′
2), at most four edges: one corresponding

41

to insert (if ∃σ ∈ Σ, q2 = δ2(q2, σ), q
′
1 = q1); one corresponding to delete (if ∃σ ∈ Σ, q1 =

δ1(q1, σ), q
′
2 = q2); one corresponding to swap (if ∃σ1 ̸= σ2 ∈ Σ, q′i = δi(qi, σi)); and

one corresponding to swap of identical letters, i.e. no-op (if ∃σ ∈ Σ, q′i = δi(qi, σ)).

We choose to work with the version with more edges since it is more convenient for

proofs.

Clearly, any path in Ged(N1,N2) corresponds to an edit path of the respective words

and vice versa.

Claim 4.2.4 ρed = ((u0, l1, u1), (u1, l2, u2), . . . , (uk−1, lk, uk)) for li = (σi, σ
′
i) is a path

in Ged(N1,N2) if and only if ρ = (d1, d2, . . . , dk) is a path in the words graph G(w1, w2)

where w1 = σ1σ2 · · ·σk, w2 = σ′
1σ

′
2 · · · σ′

k and

di =

ds if σi = ε

de if σ′
i = ε

dse otherwise

Note that in addition, all edges but those corresponding to swaps of identical letters cost

1. Thus, the sum of weights of a path ρed in Ged(N1,N2) corresponds to wgt(|ρ|) and

the length of ρed to len(|ρ|). Therefore, the infimum of the mean path in Ged(N1,N2)

corresponds exactly to the desired ned value. Hence, the ned distance between two

regular languages languages given by NFAs N1 and N2 can be reduced to computing

the infimum of the mean cycle in Ged(N1,N2) from VI = {(s1, s2)} to VF = F1 × F2,

and following Lemma 4.2.1 it can be computed in Ptime.

Theorem 4.5 The ned distance between two regular languages given by NFAs N1 and

N2 can be computed in Ptime.

42

4.3 Computing ω-ned for Regular ω-Languages

The gist of the proof of Lemma 4.2.1 is important for the development of the algorithm

for infinite words. The idea is that the infimum of the mean path in a weighted graph

is obtained either on a simple path, or on a path with a simple cycle, by repeating

the cycle over and over. Thus, one can use Karp’s dynamic programing algorithm

to compute the minimal mean value amongst simple paths and cycles, that works in

Ptime [Kar78].

We would like to lift these ideas to compute ω-ned between two regular ω-languages,

given by non-deterministic Büchi automata, henceforth NBA. To cope with the fact

that we work with Büchi automata, we need to insist that the path has a cycle, and

when projected on either components, visit an accepting state somewhere along the

cycle (this will guarantee that the corresponding runs of both NBAs accept). Unfor-

tunately, this alone does not suffice.

The problem is that if we find such a path with a cycle, which indeed corresponds

to traversing infixes of the corresponding words, it might not correspond to infixes of

the same length, as required by the definition of ω-ned. This is since the edit-distance

graph has edges corresponding to deletes and insert, and such edges process letters only

on one of the given NBA, not simultaneously on both. We should consider only lasso

paths with the same number of delete and insert operations, as these are the paths

that correspond to prefixes of the same length. To this aim, we add an additional

annotation to edges, the so called balance.

Definition 4.3.1 (Edit Distance Graph of two NBAs) Let Bi = (Σ, Qi, si, δi, Fi)

be an NBA for i ∈ {1, 2}. The edit-distance graph of B1 and B2 is a labeled weighted

graph, denoted Ged(B1,B2) = (V, L′, E, θ), which is defined similarly to the edit-distance

43

graph for NFAs with one difference: the set of labels L′ carries an additional annota-

tion, the blanance. Formally, L′ = L× B where L = Σε × Σε is defined as for NFAs,

B = {−1, 0,+1}, and label l is replaced by (l, bal(l)) where

bal(l) =

+1 if l ∈ {ε} × Σ

−1 if l ∈ Σ× {ε}

0 otherwise

Given a path

ρ = v0
l1,b1−−→ v1

l2,b2−−→ · · · lt,bt−−→ vt

in Ged(B1,B2) we use bal(ρ) for
∑t

i=1 bi.

With this definition, we are looking for the infimum mean lasso shaped path whose

balance is zero and contains a cycle that visits both components F1 and F2 at least

once. Note that in a lasso path, it is the weight of the cycle that matters, since by

repeating the cycle as much as desired, the weight of the path until the cycle begins

becomes negligible. Observe that the infimum mean balanced lasso path need not be

simple, i.e., it can involve two or more cycles. E.g. if we have a cycle with balanced

−2, another cycle with balance −3 and a cycle with balance 7 that share a vertex,

the non-simple cycle repeating the −2 balanced cycle twice, and the other two cycles

once is balanced. In this example since the cycles have a shared vertex, there is a cycle

corresponding to the concatenation of one twice with the others. But, even if they do

not share a vertex, that would be fine, because, again, by repeating them over and over

again the paths that connect them become negligible. The next section shows that it

suffices to consider lasso paths containing at most two simple cycles — either one (that

is zero balanced) or two (one that is negatively balanced and one that is positively

44

balanced).

4.4 Enough to consider two cycles

Consider the graph Ged(B1,B2). Let C = C= ⊎ C+ ⊎ C− where

C= = {α | α is a simple cycle and bal(α) = 0}

C− = {α | α is a simple cycle and bal(α) < 0}

C+ = {α | α is a simple cycle and bal(α) > 0}

Here, C= represents cycles that are zero balanced, C+ represents cycles that are posi-

tively balanced (have more inserts than deletes), and C− those that are are negatively

balanced. We define for a set of cycles α1, . . . , αn, their value as follows.

Definition 4.4.1 (Value of a set of cycles) Given a set of cycles {α1, . . . , αn}, we

use the following notations for 1 ≤ i ≤ n:

wi = θ(αi), li = |αi|, bi = bal(αi).

We define

val(α1, . . . , αn) = min

∑n

i=1 ti · wi∑n
i=1 ti · li

∣∣∣∣∣∣∣∣∣∣

∑n
i=1 ti · bi = 0

ti ≥ 0 for 1 ≤ i ≤ n

∃i. ti > 0

That is, val(α1, . . . , αn) computes the minimum among the ned value of the (imagi-

nary) path obtained by concatenating all cycles, where cycle αi is repeated ti times,

45

such that the balance of the constructed path is zero. When we have one negatively

balanced and one positively balanced cycles, their val can be easily computed, as fol-

lows.

Observation 4.4.2 For α− ∈ C−, α+ ∈ C+

val(α+, α−) =
b+ · w− − b− · w+

b+ · l− − b− · l+

The following proposition states that from a set involving no zero balanced cycles, it

is possible to choose just one positively balanced cycle and one negatively balanced

cycle and the cost of the resulting path would not be worse than the one touring many

cycles.

Proposition 4.4.3 Let α1, . . . , αm ∈ C−, αm+1, . . . , αm+k ∈ C+ for some m, k ≥ 1.

There exists α+ ∈ C+ and α− ∈ C− with

val(α1, . . . , αm+k) = val(α+, α−).

The proof makes use of Fact 2.2.5.

Proof (Proof of Proposition 4.4.3). Assume t1 . . . tm+k ∈ N are an optimal solution for

val(α1, . . . , αm+k). Following Definition 4.4.1 the ti’s need to satisfy the following

constraint:

0 ̸=
∑m

i=1 ti · (−bi) =
∑m+k

j=m+1 tj · bj (4.4.1)

By Fact 2.2.5 we can write Constraint 4.4.1 as the following m linear combinations,

46

one for each 1 ≤ i ≤ m.

ti · (−bi) =
∑m+k

j=m+1 αji · tj · bj

such that αji ∈ [0, 1] for all i, j; and
∑m

i=1 αji = 1 for every j.

Following this observation and due to the optimal solution we get that val(α1, . . . , αm+k) =

=

m+k∑
i=1

ti·wi

m+k∑
i=1

ti·li
=

m+k∑
j=m+1

m∑
i=1

tj ·αji·(wj−
bj
bi

·wi)

m+k∑
j=m+1

m∑
i=1

tj ·αji·(lj−
bj
bi

·li)

≥ min
m+1≤j≤m+k,tj ̸=0

m∑
i=1

tj ·αji·(wj−
bj
bi

·wi)

m∑
i=1

tj ·αji·(lj−
bj
bi

·li)

≥ min

m+1≤j≤m+k,tj ̸=0

{
min

1≤i≤m,αji ̸=0

{
tj ·αji·(wj−

bj
bi

·wi)

tj ·αji·(lj−
bj
bi

·li)

}}

= min
m+ 1 ≤ j ≤ m+ k

1 ≤ i ≤ m, αji, tj ̸= 0

{
tj ·αji·(wj−

bj
bi

·wi)

tj ·αji·(lj−
bj
bi

·li)

}

= min
m+ 1 ≤ j ≤ m+ k

1 ≤ i ≤ m, αji, tj ̸= 0

{
bi·wj−bj ·wi

bi·lj−bj ·li

}

□

Henceforth, we use the following notations

µ= = min
α∈C=
{val(α)} ,

µ+− = min
α+∈C+,α−∈C−

{val(α+, α−)} ,

µ∗ = min
{α1,...,αn}⊆C

{val(α1, . . . , αk)} .

With these notations, we can conclude from Proposition 4.4.3 that µ∗, the best value

47

achieved for an arbitrary set of cycles, is no better than the best value achieved for one

cycle or two.

Corollary 4.4.4 µ∗ = min{µ=, µ+−}.

Proof. Clearly µ∗ ≥ min{µ=, µ+−}. For the other direction, assume w.l.o.g. α1 . . . , αm ∈

C−, αm+1 . . . , αk ∈ C+ and

αm+k+1 . . . , αn ∈ C=. By Fact 2.2.2 and Proposition 4.4.3 we have that

µ∗= min
{∑n

i=1 ti·wi∑n
i=1 ti·li

}
≥ min

{∑m+k
i=1 ti·wi∑m+k
i=1 ti·li

,
∑n

i=m+k+1 ti·wi∑n
i=m+k+1 ti·li

}
≥ min {µ+−, µ=}

In section 4.5 we show how µ∗ can be computed. Then, in section 4.6 we show that

there exists words w1, w2 achieving µ∗ and that no pair of words can achieve a value

better than µ∗, i.e. that ω-ned(L1, L2) is indeed µ∗.

4.5 Computing µ∗

Let B1 and B2 be complete NBAs for ω-regular languages L1, L2. We want to calculate

ω-ned(L1, L2). We create Ged(B1, B2), the edit distance graph of the NBAs (from

Definition 4.3.1). By Claim 4.2.4 a walk in Ged represents an edit path from a word

in L1 to a word in L2. For the path to be accepted by both NBAs it needs to visit an

accepting state of Bi infinitely often for i ∈ {1, 2}. Thus we are interested in maximal

strongly connected components (MSCC) that have at least one state from F1 and at

least one state from F2. We can hence remove all vertices that do not reach such an

MSCC. For simplicity we assume that our graph has one such MSCC (if this is not the

48

case, we apply our algorithm to each such MSCC separately).

We need the following construction to make sure pairs of cycles are balanced and that

we evaluate all pairs of cycles:

Definition 4.5.1 (The balance t-counter graph) Let Ged(B1,B2) = (V, L×B,E, θ)

be the edit distance graph of the NBAs, and let n = |V |. Recall that L = Σε × Σε and

B = {−1, 0,+1}. For threshold t ∈ N we define Gted(B1,B2) as the labeled weighted

graph (Vt, Lt, Et, θt) where Vt = V × V × [−t, t]; the labeling function Lt omits the bal-

ance label from edges, i.e. Lt = L; the weight function θt associates with edge (n, l, n′)

for n, n′ ∈ Vt and l ∈ L the weight θed(l) (as in Definition 4.2.2); and the edges are

Et = E ′
t ∩ V 2

t where

E ′
t = {(⟨u, v, i⟩, l, ⟨u′, v, j⟩)

∣∣∣∣ (u, ⟨l, b⟩, u′) ∈ E, b = j−i }

∪ {(⟨u, v, i⟩, l, ⟨u, v′, j⟩)
∣∣∣∣ (v, ⟨l, b⟩, v′) ∈ E, b = j−i }

Let µt be the minimal mean simple cycle in Gted.

Lemma 4.5.2 There exist t ∈ N such that µt = µ∗.

Proof. Recall that by Corollary 4.4.4 µ∗ = min{µ=, µ+−}. For the first direction (≥)

let

C = ((u1, v1, b1), (u2, v2, b2), . . . , (ur, vr, br), (u1, v1, b1))

be a simple cycle in Gt such that θ(C)/|C| = µt. We can project the path C on each

coordinate we get two closed walks in Gted:

C1 = (u1, . . . , u
′
r, u1) and C2 = (v1, . . . , v

′′
r , v1).

Since we have two closed walks we can decompose them into simple cycles α1, . . . αm+k+l.

49

Now we can partition them into sets according to their balances. Let

{α1, . . . , αm} ⊆ C−

{αm+1, . . . , αm+k} ⊆ C+

{αm+k+1, . . . , αm+k+l} ⊆ C=

and let t1, . . . , tm+k+l denote their respective number of repetitions in the path C. The

claim now follows from Corollary 4.4.4.

For the second direction (≤), we show that we can find paths corresponding to µ= and

µ+− of Ged in Gted.

Case of µ=: Let c= be a zero balanced simple cycle in Ged achieving µ=. Assume

c= = v1
l1,b1−−→ v2

l2,b2−−→ · · · lk−1,bk−1−−−−−→ vk
lk,bk−−→ v1

where
∑k

i=1 bi = 0 and θ(c=)
|c=| = µ=. We observe that for big enough t and for every

r ∈ [−n, n] the following cycle crt is in Gted and it achieves the same value.

crt = (v1, v1, r)
l1−→ (v2, v1, r+b1)

l2−→ · · ·
lk−1−−→ (vk, v1, r+bk)

lk−→ (v1, v1, r)

Since c= is reachable from the initial state and the balance of a simple path is never

larger than the length of the path there exists an r ∈ [−n, n] such that (v1, v1, r) is

reachable. Therefore, taking t > n+ n suffices.

Case of µ+−: Now, let c− and c+ be a negatively and positively balanced simple

50

cycles, resp., in Ged achieving µ+−. Assume

c− = u1
l1,b1−−→ u2

l2,b2−−→ · · · lm−1,bm−1−−−−−−→ um
lm,bm−−−→ u1

and

c+ = v1
l′1,b

′
1−−→ v2

l′2,b
′
2−−→ · · ·

l′k−1,b
′
k−1−−−−−→ vk

l′k,b
′
k−−→ v1

where b− =
∑m

i=1 bi < 0, b+ =
∑k

j=1 b
′
j > 0, θ(c−)

|c−| = µ− and θ(c+)
|c+| = µ+.

In Gted for big enough t we can find a cycle ctr corresponding to repeating b+ times the

cycle c−, and then repeating b− time the cycle c+. It will have the following form

(u1, v1, r1,1), (u2, v1, r1,2), . . . , (um, v1, r1,m),

(u1, v1, r2,1), (u2, v1, r2,2), . . . , (um, v1, r2,m),

. . .

(u1, v1, rb+,1), (u2, v1, rb+,2), . . . , (um, v1, rb+,m),

(u1, v1, r
′
1,1), (u2, v1, r

′
1,2), . . . , (uk, v1, r

′
1,k),

(u1, v1, r
′
2,1), (u1, v2, r

′
2,2), . . . , (u1, vk, r

′
2,k),

. . .

(u1, v1, r
′
b+,1), (u1, v2, r

′
b+,2), . . . , (u1, vk, r

′
b−,k),

where if r1 = r then ri,j = r + i(b−) +
∑j

k=1 bi and r′i,j = r + (b+)(b−) + i(b+)
∑j

k=1 b
′
i.

Hence r′b−,k = r + (b+)(b−) + (b−)(b+) = r and ctr is a balanced cycle of Gted. Since c−

is reachable from the initial state and the balance of a path is never larger than the

length of the path there exists r ∈ [−n, n] such that (u1, v1, r) is reachable. Since both

−b−, b+ < n we have that t > n+ n2 suffices. □

In fact a smaller bound exists, in the following lemma we improve the quadratic bound

51

to linear. The idea of the proof is that in Gted it is possible to traverse part of the

negative cycle, then move to traverse part of the positive cycle, and continue traversing

the negative cycle from where we left of. Alternating between portions of the cycle we

can make sure the balance is never more than n or less than −n.

Lemma 4.5.3 µ2n = µ∗.

Proof. We use the same idea as in the previous proof, except instead of transitioning the

first cycle and then the second cycle, we alternate between them. There exists minimal

indices i0 = 0, i1, i2 . . . such that bal(cω+[ij−1..ij]) = ⌈n·j2 ⌉ for all j > 0. Similarly exists

minimal indices i′1, i
′
2 . . . such that bal(cω−[i

′
j−1..i

′
j]) = −⌈

n·j
2
⌉ for all j > 0. We alternate

the positive by progressing in the positive cycle until we reach min{ij,−b−|c+|} then

we progress on the negative cycle until we reach min{i′j, b+|c−|}. We alternate between

them until we reach a balance of 0 (after −b− of the positive cycle and b+ of the

negative cycle). Since both b+ and −b− are at most n we have that at any given point

our total balance will be in the range of [−n, n]. Therefore t > n+ n = 2n suffices. □

4.6 Showing ω-ned(L1, L2) = µ∗

Next, we would like to show that ω-ned(L1, L2) = µ∗. Claim 4.6.1 shows that for

every ultimately periodic words w1 ∈ L1 and w2 ∈ L2 we have ω-ned(w1, w2) ≥ µ∗.

Proposition 4.6.4 shows that this is the case also for arbitrary words w1 ∈ L1 and

w2 ∈ L2.

On the other hand, we show that µ∗ can be achieved by respective words w1 ∈ L1 and

w2 ∈ L2. Claim 4.6.3 shows that we can get arbitrarily close to µ∗ in the sense that

for every ε > 0 we can find w1, w2 such that

52

|ω-ned(w1, w2)− µ∗| < ε.

Claim 4.6.1 (Lower-bound) For any w1, w2 ∈ Li ∩ Σup, ω-ned(w1, w2) ≥ µ∗.

Proof. Let (v1, v2) be a best rotation pair for the periods of w1, w2 and let ρ ∈ D∗ be

the optimal edit path for (v1, v2). We show that there exists a cycle c in Gted that is

accepting in both NBAs and satisfies θ(c)/|c| = ned(v1, v2).

For i ∈ {1, 2} let βi · γω
i be an accepting lasso run of Bi on wi where γi reads vi and

assume w.l.o.g. |γi| = |vi|. Assume β1 = q1q2 . . . qℓ1 , β2 = q′1q
′
2 . . . q

′
ℓ2
, γ1 = p1p2 . . . pℓ,

γ2 = p′1p
′
2 . . . p

′
ℓ. Consider the paths β = (q1, q

′
1), (q2, q

′
1), . . . , (qℓ1 , q

′
1), (qℓ1 , q

′
2), (qℓ1 , q

′
3) . . . (qℓ1 , q

′
ℓ2
)

and γ = (pi0 , p
′
j0
), . . . , (pik , p

′
jk
) where

ir =

0 r = 0

ir−1

if ρ[r] = de

or ir = |γ1|

ir−1+1 otherwise

jr =

0 r = 0

jr−1

if ρ[r] = ds

or jr = |γ2|

jr−1+1 otherwise

Since |γ1| = |γ2| we have that |ρ| = |γ| and γ is a reachable cycle with value: θ(γ)/|γ| =

wgt(ρ)/len(ρ) = cost(ρ). □

The proof of Claim 4.6.3 makes use of the following lemma.

Lemma 4.6.2 [Cycle polarity] Let c = ((q1, p1), (q2, p2), . . . , (qt, pt), (q1, p1)) be a cycle

in Ged (where edge labels have been removed). We can decompose c into two cycles c+, c−

in Ged such that c+ ∈ C+ ∪ C= and c− ∈ C− ∪ C=.

53

Proof. Let i1, . . . , ik, j1, . . . , jk be the indices where we took an edge from B1,B2, re-

spectively. Then

c+ = ((q1, pi1), (q1, pi2), . . . , (q1, pik), (q1, pi1))

c− = ((qj1 , p1), (qj2 , p1), . . . , (qjk , p1), (qj1 , p1))

The balanced of c+ may not be negative, since it has no delete edges, and that of c−

may not be positive, since it has no insert edges. □

Claim 4.6.3 (Upper-bound) For all ε > 0 there exists wω
1 ∈ L1∩Σup, wω

2 ∈ L2∩Σup

such that |ω-ned(wω
1 , w

ω
2)− µ∗| ≤ ε.

Proof. We show that both µ= and µ+− can be expanded to a valid edit path. Let ε > 0.

Case of µ=: Let c= be a simple cycle in Ged with val(c=) = µ= and bal(c=) = 0. By

our assumption on the MSCC, there exists a cycle c traversing an accepting state from

both F1 and F2. W.l.o.g. it intersects c=. We claim that we can assume bal(c) = 0.

Assume w.l.o.g. bal(c) = b > 0. We can find a negatively balanced cycle that starts

from the same point as c= by tracing only edges corresponding to B1 and staying put

on a fixed state of B2 (for details see Lemma 4.6.2). Then c′ = (c)(b−)(c−)
(b) is a cycle

in Ged and it is zero balanced.

Since c= is reachable from the initial state we have a path ρu from the initial state to

c=. Let ρv be the cycle ((c=)
nε · c). From here we create the walk ρ = ρu · (ρv)ω.

Recall that a path in Ged is an element of (V × L × V)∞ where V = Q1 × Q2 and

L = Σε × Σε. Given a path ρ in Ged, we use labels(ρ) for π2(ρ) ∈ (Σε × Σε)
∞. For

i ∈ {1, 2}, let ui = πi(labels(ρu)), vi = πi(labels(ρv)) and wi = ui(vi)
ω. Then wi ∈ Li

since the corresponding runs of Bi visits an accepting state in Fi infinitely often.

54

We turn to show that ω-ned(w1, w2)−µ= < ε. Recall that ω-ned(w1, w2) = ned(v1, v2)

following Theorem 3.2. Note that since ρv is balanced |v1| = |v2|. For large enough nε:

ω-ned(w1, w2)− µ= = ned(v1, v2)− µ=

≤ θ(ρv)

|ρv|
− µ=

=
nε · θ(c=)+θ(c)

nε · |c=|+|c|
− θ(c=)

|c=|

≤ θ(c)

nε · |c=|
< ε

Case of µ+−: In a similar fashion we have the simple cycles c+, c− Ged with val(c+) =

µ+, val(c−) = µ− and bal(c+) = b+ > 0, bal(c−) = b− < 0. Since c+, c− are in the same

SCC, we have a cycle c = p1p2 where p1 is from the first state of c+ to the first state

of c− and p2 comes back to the first state in c+ while containing accepting states from

both F1 and F2. We can assume that bal(c) = b is 0 since if this is not the case we

can use Lemma 4.6.2 to extract from c a positive and a negative cycle, and achieve a

balance of zero by repeating each the number of times that corresponds to the balance

of the other.

Since c+ is reachable from the initial state we have a path ρu from the initial state to

c+. Let ρv be the cycle

(c+)
−b−·nε · p1 · (c−)b+·nε · p2. □

For i ∈ {1, 2}, let ui = πi(labels(ρu)), vi = πi(labels(ρv)) and wi = ui(vi)
ω. Then

wi ∈ Li since the corresponding runs of Bi visits an accepting state in Fi infinitely

55

often. Thus, for large enough nε,

ω-ned(w1, w2)− µ+− =

= ω-ned(vω1 , v
ω
2)− µ+−

≤ θ(ρv)

|ρv|
− µ+−

=
nε·(−b−·θ(c+)+b+·θ(c−))+θ(c)

nε·(−b−·|c+|+b+·|c−|)+|c|
− −b−·|c+|+b+·|c−|
−b−·|c+|)+b+·|c−|

≤ θ(c)

nε·(−b−·|c+|+b+·|c−|
< ε

Proposition 4.6.4 (Ultimately periodic words suffice)

ω-ned(L1, L2) = ω-ned(L1 ∩ Σup, L2 ∩ Σup)

Proof. Clearly ω-ned(L1, L2) ≤ ω-ned(L1 ∩ Σup, L2 ∩ Σup). For the other direction,

it suffices to show that for all ε > 0 and any w1 ∈ L1, w2 ∈ L2 there exists w′
1 ∈

L1 ∩ Σup, w′
2 ∈ L2 ∩ Σup such that |ω-ned(w′

1, w
′
2)− d| < ε where d = ω-ned(w1, w2).

Let r1, r2 be accepting runs of w1, w2 in their respective NBAs, B1 and B2. Let q1 and

q2 be such that r1[i] = q1 and r2[i] = q2 for infinitely many is. Such a pair exists by the

pigeonhole principle. Let n∗ be the first index such that r1[n∗] = q1 and r2[n∗] = q2.

Since the number of states in both automata is finite, there is a C ∈ O(|Ged|2) such that

if there is a balanced path between some pair of states in Ged then there is one that is

shorter than C. Let n0 > max{n∗, 2C/ε} be such that |ned(w1[..n0], w2[..n0])− d| <

ε/2. Let ρ be the corresponding edit path. Let n∗∗ ≥ n0 be the first index after

n0 such that r1[n∗∗] = q1 and r2[n∗∗] = q2 and accepting states of both NBAs have

been visited along the way. Let ui = wi[..n∗], vi = wi[n∗+1..n0]. Let ρz be a path

56

from (r1[n0], r2[n0]) to (r1[n∗∗], r2[n∗∗]) and zi the words obtained by projecting ρz on

the NBAs Bi for i ∈ {1, 2}. Note that the length of ρz is bounded by C and thus

also its weight. Let ρv be an optimal edit path for v1, v2. Let i be the first such

that both coordinates of endpoint(ρ[..i]) are greater or equal to n∗ (see Figure 4.1).

Assume w.l.o.g. that endpoint(ρ[..i]) = (n∗, n∗+δ) where δ ≥ 0. Because (n∗, n∗) is

Figure 4.1: Auxiliary Figure for the proof of Proposition 4.6.4

on the diagonal of G(v1z1, v2z2,) the number of south edges in ρ is at least δ, thus

wgt(ρ[..i]) ≥ δ. Also wgt(ρv) ≤ δ + wgt(ρ[i+1..n0]) and similarly for the weights.

57

Further n∗ + δ ≥ len(ρ[..i]) ≥ wgt(ρ[i..]). Thus

ω-ned(u1(v1z1)
ω, u2(v2z2)

ω)− d ≤ ned(v1z1, v2z2)− d ≤

≤ wgt(ρv) + wgt(ρz)

len(ρv) + len(ρz)
− d

≤ δ + wgt(ρ[i+1..n0]) + wgt(ρz)

δ + len(ρ[i+1..n0]) + len(ρz)
− d

≤ n∗ + δ + wgt(ρ[i+1..n0]) + wgt(ρz)

n∗ + δ + len(ρ[i+1..n0]) + len(ρz)
− d

≤ wgt(ρ[..i]) + wgt(ρ[i+1..n0]) + wgt(ρz)

len(ρ[..i]) + len(ρ[i+1..n0]) + len(ρz)
− d

≤ wgt(ρ) + wgt(ρz)

len(ρ) + len(ρz)
− d

≤ wgt(ρ) + C

len(ρ)
− d =

wgt(ρ)

len(ρ)
− d+

C

n0

≤ ε

The first inequality follows from Theorem 3.2. We use inequality because the concerned

periods may not be a best rotation. The second follows since ρ · ρz is an edit path

for (v1z1, v2z2). For the third inequality, recall that (n∗, n∗) is on the diagonal of

G(v1z1, v2z2,) and Because the number of south edges in ρ is at least δ, wgt(ρ[..i]) ≥ δ.

The third inequality follows since the optimal path from (n∗, n∗) to (n∗∗, n∗∗) is better

than going δ steps to the south and then following ρ to (n0, n0) and then following ρz.

The rest follows by applying arithmetic on our assumptions and noticing that if ρ̂ is

an edit path for w1, w2 then cost(ρ̂) ≥ cost(ρ) by Fact 2.2.2. □

Corollary 4.6.5 ω-ned(L1, L2) = µ∗

Remark 4.6.6 (Distance on Parity automata) We claim that the same idea can

be used to compute the distance between two regular ω-languages given by non-deterministic

parity automata P1 and P2. We work with the definition saying that a run is accepting

if the minimum color visited infinitely often is even. Consider Ged(P1,P2) constructed

58

as in Definition 4.3.1. A zero balanced path in Ged that corresponds to accepting runs

of P1 and P2 will traverse some MSCC and the minumum color visited in Pi for

i ∈ {1, 2} will be even. We can thus consider MSCCs where the minimum color from

Pi for i ∈ {1, 2} is even. To this aim we can simply remove states where the color in

component i (for i ∈ {1, 2}) corresponds to the minimum for i in the MSCC and it

is odd, and repeat this process until we are left with MSCCs satisfying this criterion.

Then we can compute µ∗ = min{µ=, µ+−} in the same manner. To see that there are

words w1, w2 corresponding to µ∗ we apply the same idea as in Claim 4.6.3 but instead

of extending the cycle to visit a state of the accepting state Fi of the NBA, we extend

the cycle to visit the minimum color of both P1 and P2. Since the process of extracting

the MSCCs of interest can also be done in Ptime (it requires at most the number of

colors times computation of MSCCs) we conclude that the ω-ned distance between two

languages given by parity automata can also be done in Ptime.

Remark 4.6.7 (Distance on Muller automata) We further claim that the idea

can also be used when the languages are given by non-deterministic Muller automata

M1 and M2. Assume the acceptance condition of Mi is Fi = {F1, . . . , Fki} for

i ∈ {1, 2}. Now it suffices to consider only SCCs (not necessarily maximal) whose

projection onMi is in Fi for i ∈ {1, 2}. There are k1 × k2 such SCCs. For each such

SCC, we can compute µ∗. Take an SCC corresponding to some Fi in Fi for i ∈ {1, 2}.

To show words w1, w2 achieving µ∗ we extend the path by visiting each state of F1 and

each state of F2. This adds a factor of |Q1| × |Q2|. Thus, the ω-ned distance between

two languages given by Muller automata can also be done in Ptime.

59

4.7 The algorithm

For clarity, we finish off this chapter by describing the algorithm to compute ω-ned

between languages. Given L1, L2 ω-regular languages and their corresponding Büchi

automata, B1 = (Σ, Q1, s1, δ1, F1),B2 = (Σ, Q2, s2, δ2, F2) we provide the full algorithm

for computing ω-ned(L1, L2).

Algorithm 4.1: ω-ned
Input: B1 = (Σ, Q1, s1, δ1, F1), B2 = (Σ, Q2, s2, δ2, F2), t - threshold

output: ω-ned(L1, L2) = min
w1∈L1,w2∈L2

ω-ned(w1, w2) = µ∗

initialize: G := Gted(B1,B2) - the balance t-counter graph Definition 4.5.1 , µ∗ := 1

for MSCC M in G such that M ∩ (F1 ×Q2) ∩ (Q1 × F2) ̸= ∅ do
µ← minimal mean value amongst simple cycles of G (using [Kar78])

µ∗ ← min(µ∗, µ)

return µ∗

Example 4.7.1 Consider the languages L1 = {aaab}ω, L2 = {aab, ab}ω. They can be

represented by the NBAs B1 and B2 given in Figure 4.3.

Running the algorithm on these two NBAs, we get the result 2
9
. We can see that indeed

the edit-path in Figure 4.2 is of cost 2
9
and it corresponds to the words aaabaaab ∈ L1

and aababaab ∈ L2.

In this example, t = 1 suffices since we have an optimal cycle whose balance index

never goes above 1 or below 0. Figure 4.4 shows this cycle; one can observe that the

counter is always within 0 and 1. Figure 4.5 shows the respective positive and negative

cycles.

60

Figure 4.2: South-East graph with edit-path showing ω-ned((aaab)ω, (aababaab)ω) =
ned(aaabaaab, aababaab) = 2

9
.

B1 :

B2 :

Figure 4.3: An NBA B1 for L1 = {aaab}ω and an NBA B2 for L2 = {aab, ab}ω as
inputs for section 4.7.

61

Figure 4.4: Minimal cycle of Gted(B1,B2)

62

Positive balanced cycle: Negative balanced cycle

Figure 4.5: Original cycles in Ged(B1,B2)

63

Chapter 5

Reflecting on the transient part

We have managed to provide an edit distance for infinite words that answers the desired

criteria. In particular, this measure was designed to ignore differences that occur in

finite prefixes of the words. However, if the given two words are ultimately equal, e.g.

if x1 = a4baω and x2 = a4caω it would be nice to get a measure that reflects that there

is some difference on the transient parts, and perhaps more informatively, that the

average number of edit operations required in the transient part of the words is 1/5.

To crystallize the desired intuition from such an edit distance function we review

Tabuada and Neider’s definition of robust LTL, in short rLTL. The idea is to refine

the truth values of satisfies and violates (or true and false) to capture, in the case the

formula is violated, how severe is the violation. In rLTL, the answer to whether a given

infinite word satisfies a formula is one of five values {0, 1, 2, 3, 4}. The intuition can be

understood by considering the following five ultimately periodic words and the formula

64

Gp (stating that p should always hold).

w0 = (p)ω, w1 = p10 · (p)ω, w2 = (p10 · p)ω,

w3 = p10 · p · (p)ω, w4 = (p)ω

With regard to the question does wi satisfy Gp in rLTL the answer is 4−i. That is, the

answers are decreasing from the best score 4 to the lowest score 0. Note that while in

the current work we measure distance, and hence 0 is the optimal value, Tabuada and

Neider measure satisfaction, thus the higher the better (and 4 is the highest). Let’s

take a closer look to understand [TN16]’s scores. The word w0 gets the perfect score 4

since it satisfies the formula at hand (since p indeed always holds). The word w1 gets

the second best score 3 since while p doesn’t always hold it almost always holds (i.e.

it holds in all but finitely many times). The word w2 gets the score 2 since p no longer

almost always holds, but it does hold infinitely often. The score for w3 and w4 goes

down to 1 and 0, respectively, since p does not hold infinitely often, but at least for w3

there is some time point where p holds.

We find this scoring system appealing and thus aim to find an edit distance function for

ultimately periodic words that refines it. In particular, when computing the distance

between the words wi and pω we expect the result to reflect the proportion of p’s in

the transient and periodic parts of the word. That is, consider w′
1 = p50 p 50pω and

w′′
1 = p80 p 20pω. According to [TN16] the satisfaction score of both with respect to Gp

is 3; but we expect the distance between w′
1 and w = pω to be greater than the distance

between w′′
1 and w since more edit operations are required to get from w′

1 to w than

from w′′
1 to w. For the same reason we expect the difference between w′

2 = (p70 · p30)ω

to w to be greater than the distance between w′′
2 = (p10 · p90)ω and w.

65

In order to obtain a distance function dtp that reflects the distances in both the transient

part and the periodic part, as we wish, we can simply combine a distance function dt

that reflects distances in the transient part and a distance function dp that reflects

distances in the periodic part in a pair and define the order of pairs using lexicographic

order (henceforth lex order) Using Fact 2.2.3 we can almost reduce the problem to

finding suitable measures to the transient and periodic parts. For instance we can

define dtp based on ω-ned for dp and Discλ for dt. Such a definition would give us

the desired intuition of the normalized number of edits required in the period, but as

mentioned already in the introduction, Discλ cannot model the normalized number of

edits in the transient part. If the transient part is given to us explicitly, we can instead

use distance measures for finite words and apply it on the transient part, using the

following Fact 2.2.4.

The obvious candidate to apply to the transient part is of course ned. This gives rise

to the following definition.1

Definition 5.0.1 Let u1, u2 ∈ Σ∗ and v1, v2 ∈ Σ+. Let w1 = u1(v1)
ω and w2 = u2(v2)

ω.

We define

up$ned(⟨u1, v1⟩, ⟨u2, v2⟩) = (ned(u1, u2), ω-ned(w1, w2))

We can immediately conclude that

Theorem 5.2 (Σ∗ × (Σup/ ≡)),up$ned) is a metric space.

1In this definition and the following ones the left component corresponds to the transient part
and the right corresponds to the periodic part. Usually, we view the periodic part as more important,
hence the lexicographic order we use would consider the right component as the one with higher
significance. We prefer to write the transient part on the left since it is on the left of an ultimately
periodic word (which is read left to write).

66

This definition answers the desired intuition for the pairs of words discussed above,

but it also gives that

up$ned(⟨aaaa, a⟩, ⟨a, a⟩) = (3
4
, 0)

while both ⟨aaaa, a⟩ and ⟨a, a⟩ represent the same ultimately periodic word aω. In

other words, it doesn’t preserve the property that the distance between different rep-

resentations of the same ultimately periodic word is zero. Formally,

Property 5.0.3 If u1(v1)
ω = u2(v

2)ω Then dtp(⟨u1, v1⟩, ⟨u2, v2⟩) = (0, 0).

However, it can make sense in applications where the length of the transient part

reflects something inherent like the length of an initialization sequence.

If a separation between the transient and the periodic parts is not given to us a priory,

then we cannot use such a measure without deciding where the separation between the

transient and periodic parts should be placed. We can choose the separation point to

be the least index i such that w[i..] is periodic, we denote this distance up•ned and

define it formally below. Another option is to assume some k ∈ N is given and consider

for the transient part the prefix w[..k].

Definition 5.0.4 Let w1, w2 ∈ Σω be two ultimately periodic words. We define

up•ned(w1, w2)
def
== (ned(u′

1, u
′
2), ω-ned(w1, w2))

upkned(w1, w2)
def
== (ned(w1[..k], w2[..k]), ω-ned(w1, w2))

where for i ∈ {1, 2}, u′
i is the shortest prefix of wi such that there exists v′i for which

wi = u′
i(v

′
i)
ω.

Property 5.0.3 is clearly preserved by both up•ned and upkned because if w1 =

67

u1(v1)
ω, w2 = u2(v2)

ω and w1 = w2 then u′
1 = u′

2 and w1[..k] = w2[..k]. Since the

transient part is not explicitly given, we cannot simply apply Fact 2.2.3 or Fact 2.2.4

to deduce these two definitions are metrics. However, we can still show that they are.

Theorem 5.5 (Σup/ ≡,up•ned) is a metric space.

Proof. For identity of indiscernibles, note that the second component of up•ned is

different than zero iff w1 ̸≡ w2. If w1 ≡ w2 yet w1 ̸= w2 then w1 and w2 differ in the

transient part. Thus u′
1 ̸= u′

2 implying the first component of up•ned will be different

than zero. And if the first component is not zero then clearly w1 ̸= w2. Symmetry

clearly holds. Triangle inequality holds since the u′
i part is determined given wi, and

hence the reasoning of Fact 2.2.4 applies. □

Considering upkned we define two ultimately periodic words as equivalent, denoted

w1 ≡k w2 iff w1 ≡ w2 and w1[..k] = w2[..k].

Theorem 5.6 (Σup/ ≡k,upkned) is a metric space.

Proof. Again, the second component of upkned is different than zero iff w1 ̸≡ w2.

The first component is different than zero iff w1[..k] ̸= w2[..k]. Thus upkned(w1, w2) is

different than zero iff w1 ̸≡k w2, thus identity of indiscernibles holds. Symmetry clearly

holds. Triangle inequality holds since w[..k] is deterministically determined given w,

and hence the reasoning of Fact 2.2.4 applies. □

Let us discuss the results provided by up•ned and upkned for various examples.

Consider the words x1 = (b4a)cω and x2 = (ab4)cω. We have that up•ned(x1, x2) =

(2
6
, 0) and upkned(x1, x2) = (2

k
, 0) for k ≥ 5. Both are plausible. Consider x′

1 = (b4a)cω

and x′
2 = (ab4)dω. We have that up•ned(x

′
1, x

′
2) = (2

6
, 1) and upkned(x

′
1, x

′
2) = (k−3

k+1
, 1)

68

for k ≥ 5. The latter is not plausible for large k’s as it blurs the difference in the

transient part. In general, for words which are not almost equal, for large enough k’s

the first component of upkned may not reflect well the differences in the transient

part.

Consider now y1 = bω, y2 = a3bω and y3 = a100bω. We get that up•ned(y1, y2) =

up•ned(y1, y3) = (1, 0) which is not satisfactory since it blurs that y2 requires less edit

operations to get to y1 then y3. For these words we get that upkned(y1, y2) = (3
k
, 0)

for k ≥ 3 and upkned(y1, y3) = (100
k
, 0) for k ≥ 100 which is more plausible.

Another interesting example concerns (fully) periodic words whose periods are permu-

tations one of the other, e.g. z1 = (abc)ω and z2 = (bca)ω. We get that up•ned(z1, z2) =

(0, 0) whereas upkned(z1, z2) = (2
k
, 0) for k ≥ 2, so the former does not reflect that

there is some difference in the initial part, while the latter does.

To summarize, while we have provided three normalized edit distance functions for

ultimately periodic words, none meets the desired intuition on all examples. So it

seems that the choice of which one to choose should depend on the application. Or

perhaps better ones can be suggested in future work.

69

Part II

Normalized edit distance on finite

words

70

Chapter 6

The Normalized Edit Distance with

Uniform Operation Costs is a

Metric

The proof that ω-ned is a metric relys on the till now open question whether ned is a

metric. This chapter closes this long standing gap in the literature. We first introduce

different notation used in the paper, and present the proof that ned is a metric. Finally

we compare ned to other known edit distances and describe properties that show some

of the benifits of using ned.

6.1 Representation of edit paths

When describing ω-ned we focused on calculating the value of ω-ned, therefore the

south-east graph and endpoint let us prove our calculations were correct. The main

71

challenge in proving ned is a metric is showing that it obeys the triangle inequality.

Since in this proof we need to construct a new path given 2 paths, we introduce new

notations that allow us to easily construct such paths using a strict set of rules. For

convenience in this proof we use a slightly different representation of edit paths, using

edit letters instead of the south-east graph graph defined in Part I.

Basic edit letters The literature on defining distance between words over Σ uses

the notion of edit paths, which are strings over edit letters defining how to transform

a given string s1 to another string s2. The standard operations are deleting a letter,

inserting a letter, or swapping one letter with another letter. Formally, the basic edit

letters alphabet Γ is defined as Γ = {n, c, v, x} where:

• c stands for change: the relevant letter in the source string is replaced with

another letter.

• v stands for insert : a new letter is added to the destination string.

• x stands for delete: the current letter from the source string is deleted and not

copied to the destination string.

• n stands for no-change: the current letter is copied as is from the source string

to the destination string.

Extended edit letters The edit letters in Γ do not carry enough information to

transform a string w over Σ to an unknown string over Σ, since for instance the letter

v does not provide information on which letter σ ∈ Σ should be inserted. To this aim

72

we define the alphabet ΓΣ that provides all the information required. Formally,

ΓΣ = {lσ| σ ∈ Σ, l ∈ {n, v, x}} ∪ {c(σ1,σ2)| σ1, σ2 ∈ Σ}.

We call strings over ΓΣ edit paths. Throughout this document we use w,w1, w2, w
′, . . .

and s, s1, s2, s
′, . . . for strings over Σ and p, p1, p2, p

′, . . . for edit paths.

Weights and length of edit paths Given a function

wgt : ΓΣ → N, that defines a weight to each edit letter, we define the weight of an edit

path wgt : Γ∗
Σ → N as the sum of weights of the letter it is composed from, namely for

an edit path p = γ1γ2 . . . γm ∈ Γ∗
Σ, wgt(γ1 . . . γm) =

∑m
i=1 wgt(γi).

In our case we are interested in uniform costs where the weight of n is 0 and the

weight of all other operations is the same. For simplicity we can assume that the

weight of all other operations is 1. Thus, we can define the weight over Γ instead of

ΓΣ simply as wgt : Γ → N where wgt(γ) = 0 if γ = n and wgt(γ) = 1 otherwise,

namely if γ ∈ {c, v, x}. We also define the function len : ΓΣ → N as len(γ) = 1 and

len : Γ∗
Σ → N as len(γ1 . . . γm) =

∑m
i=1 len(γi). Clearly here we have len(p) = |p|. Later

on we introduce new edit letters whose length is different than 1. Thus, the more

general definition of len.

Example 6.1.1 Let w1 = abcd and w2 = badee. Then p = xa · nb · cc,a · nd · ve · ve

is an edit path transforming w1 to w2. We have that wgt(p) = wgt(xncnvv) = 4 and

len(p) = 6.

Applying an edit path to a string Given a string w over Σ, and an edit path p

over ΓΣ we can now define the result of applying p to w.

73

Definition 6.1.2 We define a function apply : Σ∗×Γ∗
Σ → Σ∗∪{⊥} that given a string

w over Σ, and an edit path p over ΓΣ obtains a new string w′ over Σ as follows. It

returns ⊥ if the edit path is invalid for the input word.

apply(p, w) =

ε if p = w = ε

σ′ · apply(p[2..], w) if p[1]=vσ′

σ′ · apply(p[2..], w[2..]) if p[1]=c(σ,σ′) and w[1]=σ

σ · apply(p[2..], w[2..]) if p[1]=nσ and w[1]=σ

apply(p[2..], w[2..]) if p[1]=xσ and w[1]=σ

⊥ otherwise

We say that a string pij over ΓΣ is an edit path from string si to string sj over Σ if

apply(pij, si) = sj. With a bit of overriding, we say that a string pij over Γ is an edit

path from strings si to sj over Σ if there exists an extension of pij with subscripts from

Σ that results in an edit path from si to sj.

Example 6.1.3 Following on Example 6.1.1, we have that apply(xanbcc,andveve, abcd) =

badee, and that xncnvv is an edit path from abcd to badee.

6.2 Normalized edit distance definition

The normalized edit distance Let p be an edit path. The cost of p, denoted

cost(p)

cost(p) =

wgt(p)
len(p)

if |p| > 0

0 otherwise

74

Using the definition of cost we can define the notion we study in this chapter, namely

the normalized edit distance, ned, of Marzal and Vidal [MV93].

Definition 6.2.1 (The normalized edit distance, ned [MV93]) The normalized

edit distance between si and sj, denoted ned(si, sj) is the minimal cost of an edit path

pij from si to sj. That is,

ned(si, sj) = min {cost(pij) | pij ∈ Γ∗
Σ and apply(pij, si) = sj}

Note that while, in general, wgt may assign arbitrary weights to edit letters, in this

paper we assume the uniform weights as defined above.

Example 6.2.2 Let Σ = {a, b, c}, s1 = acbb and s2 = cc. Then the string xnxc

denotes an edit path taking s1, deleting the first letter (a), copying the second letter

(c), deleting the third letter (b), and replacing the fourth letter (b) by c. This edit path

indeed changes s1 to s2. Its cost is 1+0+1+1
4

= 3
4
. It is not hard to verify that this cost

is minimal, therefore ned(s1, s2) =
3
4
.

6.3 Proof of metric

It is not hard to see that ned satisfies the first and second condition of being a metric.

The following proposition establishes that the distance of a string to itself, according

to ned, is zero, and that the distance between two strings is symmetric.

Proposition 6.3.1 Let s, s1, s2 ∈ Σ∗. Then

1. ned(s, s) = 0

75

2. if s1 ̸= s2 then ned(s1, s2) > 0

3. ned(s1, s2) = ned(s2, s1)

Proof. First clearly, if s ̸= ε then n|s| is an edit path from s to s, and thus ned(s, s) =

0
|s| = 0. Second, if s1 ̸= s2 then any edit path from s1 to s2 must contain at least one

non-n character. Thus, its cost is d
l
for some d > 0, implying ned(s1, s2) > 0. Third,

assume p12 = γ1γ2 . . . γk is an edit path from s1 to s2. Define p12 = γ1 γ2 . . . γk where

γ =

nσ if γ = nσ

c(σ2,σ1) if γ = c(σ1,σ2)

xσ if γ = vσ

vσ if γ = xσ

Then p12 is an edit path from s2 to s1 and the cost they induce is the same. Hence, if

p12 is a minimal edit path from s1 to s2 then p12 is a minimal edit path from s2 to s1

implying ned(s1, s2) = ned(s2, s1). □

The challenge is proving that ned satisfies the third condition, the triangle inequality.

6.3.1 A Proof of the Triangle Inequality

Let s1, s2, s3 ∈ Σ∗ and p12, p23 be edit paths, such that apply(p12, s1) = s2, apply(p23, s2) =

s3. We would like to define a method cmps : Γ∗
Σ × Γ∗

Σ → Γ∗
Σ that given the two edit

paths p12, p23 returns an edit path p13 from s1 to s3. In addition, using the notations

d∗ = wgt(p∗) and l∗ = len(p∗) for ∗ ∈ {12, 23, 12}, we would like to show that both of

the following hold:

d13 ≤ d12 + d23 (6.3.1)

76

l13 ≥ max{l12, l23} (6.3.2)

From these two equations we can deduce that the cost of the resulting path p13 is at

most the sum of costs of the given paths p12 and p23 proving that ned satisfies the

triangle inequality.

Introducing a new edit letter To do this we need, for technical reasons, to intro-

duce a new edit letter, which we denote b (for blank). This is actually an abbreviation

of vx, that is, it signifies that a new letter is added and immediately deleted. We

enhance the weight and length definition from Γ to Γ ∪ {b} as follows.

wgt(γ) =

0 if γ = n

1 if γ ∈ {c, v, x}

2 if γ = b

len(γ) =

1 if γ ∈ {n, c, v, x}

2 if γ = b

As before we use the natural extensions of wgt and len from letters to strings and

define cost(p) to be wgt(p)/len(p).

The compose method We define a helper function cmpsh that produces a string

over (ΓΣ ∪ {b})∗ (rather than over Γ∗
Σ). Given such a sequence we can convert it

into a sequence over ΓΣ by deleting all b symbols. The method cmpsh : Γ
∗
Σ × Γ∗

Σ →

(ΓΣ ∪ {b})∗ ∪ {⊥} is defined inductively, in Definition 6.3.2, by scanning the letters of

the given edit paths p12, p23. We say that cmpsh is well defined if it does not return

⊥. We show that, when applied on edit paths p12 and p23 transforming some s1 into

77

s2 and s2 into s3, respectively, cmpsh is well defined.

Definition 6.3.2 Let p12, p23 be edit paths over ΓΣ. We define cmpsh(p12, p23) induc-

tively as follows.

cmpsh(p12, p23) =

ε if p12 = p23 = ε (0)

xσ · cmpsh(p12[2..], p23) if p12[1] = xσ (1)

vσ · cmpsh(p12, p23[2..]) if p23[1] = vσ (2)

nσ · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (nσ, nσ) (3)

c(σ′,σ) · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (nσ′ , c(σ′,σ)) (4)

xσ · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (nσ, xσ) (5)

c(σ1,σ3) · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (c(σ1,σ2), c(σ2,σ3)) (6)

xσ1 · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (c(σ1,σ2), xσ2) (7)

c(σ′,σ) · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (c(σ′,σ), nσ) (8)

vσ · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (vσ, nσ) (9)

vσ2 · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (vσ1 , c(σ1,σ2)) (10)

b · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (vσ, xσ) (11)

⊥ otherwise (12)

We further show that if the resulting string is p13 then applying the function apply to s1

and the edit path obtained from p13 by deleting all b results in the string s3. Figure 6.1

shows an example of the application of cmpsh on two given edit paths. In the sequel

we will further show that the desired equations (Equation 6.3.1) and (Equation 6.3.2)

hold.

Note that if we reach case (12) then we cannot claim that the result is an edit

path. We thus first show that if cmpsh is applied to two edit paths p12, p23 such

78

2
3

4
-

5

6

c

v

n

v

n

n

b

a

b

a
b c b b a b

(a) An optimal edit path p12 for w1, w2

1
2

3
4

5

6

v

c

v

n

n

n

b

a

b

a
a b a b a b

(b) The composed edit path p13 using Definition 6.3.2

1
2

3

4

-

5

6

v

n

c

n

x

n

n

b

a

b

b

c

b

a b a b a b

(c) An optimal edit path p23 for w2, w3

p12 = cvnvnn

p23 = vncnxnn

cmpsh(p12, p23) =
= cmpsh(cvnvnn, vncnxnn)
=1 v · cmpsh(cvnvnn, ncnxnn) case (2) ε va
=2 vc · cmpsh(vnvnn, cnxnn) case (8) cb,a nb
=3 vcv · cmpsh(nvnn, nxnn) case (10) vc cc,a
=4 vcvn · cmpsh(vnn, xnn) case (3) nb nb
=− vcvnb · cmpsh(nn, nn) case (11) vb xb
=5 vcvnbn · cmpsh(n, n) case (3) na na
=6 vcvnbnn case (3) nb nb

p13 = h(cmpsh(p12, p23)) = h(vcvnbnn) = vcvnnn

Figure 6.1: Let w1 = abab, w2 = bcbbbab, w3 = ababab. Figure 6.1(a) shows an optimal edit path p12 between
w1 to w2, Figure 6.1(c) shows an optimal edit path p23 between w2 to w3. Figure 6.1(b) shows the edit path p13
composed from p12 and p23 using Definition 6.3.2. The edit operations in Figure 6.1(b) are marked with numbers 1 to
6. A number n in between 1 and 6 in Figure 6.1(a) and Figure 6.1(c) signifies that the corresponding edge contributed
to the construction of the edge marked n in Figure 6.1(b) (thus for the operations corresponding to cases (1) and (2)
of Definition 6.3.2, there is one corresponding marking in Figure 6.1(a) and Figure 6.1(c) and for the others there are
two). The labels − in Figure 6.1(a) and Figure 6.1(c) correspond to case (11) dealing with adding a letter when going
from s1 to s2 and deleting it when going from s2 to s3, which yields the edit symbol b . Note that p13 is not optimal;
still its cost is better than the sum of the costs of p12 and p23.

that apply(p12, s1) = s2, and apply(p23, s2) = s3, then the recursive application of

cmpsh(p12, p23) will never reach the (12) case. That is, cmpsh(p12, p23) is well defined.

Lemma 6.3.3 Let s1, s2, s3 ∈ Σ∗ and p12, p23 ∈ Γ∗
Σ be edit paths, such that apply(p12, s1) =

s2 and apply(p23, s2) = s3. Then p13 = cmpsh(p12, p23) is well-defined.

Proof. The proof is by structural induction on cmpsh. For the base case, we have

that p12 = p23 = ε. Then p13 = ε. Thus cmpsh reaches case (0) and is well defined.

For the induction step we have p12 ̸= ε or p23 ̸= ε. If p12 = ε then it follows from

the definition of apply that s1 = s2 = ε. Given that apply(p23, ε) is defined we get that

p23[1] = vσ. From the definition of apply we have s3 = σ · apply(p23[2..], s2). Hence

79

s3[2..] = apply(p23[2..], s2). Therefore, cmpsh reaches case (2) and will never reach

case (12) since from the induction hypothesis it follows that cmpsh(p12, p23[2..]) is well

defined.

If p23 = ε we get s2 = s3 = ε and p12[1] = xσ. Hence cmpsh reaches case (1) and similar

reasoning shows that the induction hypothesis holds for the recursive application, and

thus the result is well defined.

Otherwise the first character of p12 is not x and the first character of p23 is not v. We

consider the remaining cases, by examining first the first letter of p12.

1. Case p12[1] = vσ1 .

From the definition of apply we get that s2 = σ1·s2[2..] and s2[2..] = apply(p12[2..], s1).

■ Subcase p23[1] = c(σ2,σ3).

From the definition of apply it follows that σ1 = σ2, s3 = σ3 · s3[2..] and

s3[2..] = apply(p23[2..], s2[2..]). Thus cmpsh reaches case (10) and the induc-

tion hypothesis holds for the recursive application.

■ Subcase p23[1] = nσ2 .

Similarly, from the definition of apply we get that σ1 = σ2, s3 = σ2 · s3[2..]

and furthermore s3[2..] = apply(p23[2..], s2[2..]). Thus cmpsh reaches case

(9) and the induction hypothesis holds for the recursive application.

■ Subcase p23[1] = xσ2 .

Similarly, from the definition of apply we get that σ1 = σ2 and s3 =

apply(p23[2..], s2[2..]). Thus cmpsh reaches case (11) and the induction hy-

pothesis holds for the recursive application.

2. Case p12[1] = c(σ1,σ2).

80

From the definition of apply we get that s1 = σ1 · s1[2..], s2 = σ2 · s2[2..] and

furthermore s2[2..] = apply(p12[2..], s1[2..]).

■ Subcase p23[1] = c(σ3,σ4).

From the definition of apply we get that σ2 = σ3, s3 = σ4 · s3[2..] and

s3[2..] = apply(p23[2..], s2[2..]). Thus cmpsh reaches case (6) and the in-

duction hypothesis holds for the recursive application.

■ Subcase p23[1] = nσ3 .

Similarly, from the definition of apply it follows that σ2 = σ3, s3 = σ3 ·s3[2..]

and s3[2..] = apply(p23[2..], s2[2..]). Thus cmpsh reaches case (8) and the

induction hypothesis holds for the recursive application.

■ Subcase p23[1] = xσ3 .

Similarly, from the definition of apply we get that σ2 = σ3 and s3 = apply(p23[2..], s2[2..]).

Thus cmpsh reaches case (7) and the induction hypothesis holds for the re-

cursive application.

3. Case p12[1] = nσ

From the definition of apply we get that s1 = σ · s1[2..], s2 = σ · s2[2..] and

s2[2..] = apply(p12[2..], s1[2..]).

■ Subcase p23[1] = c(σ1,σ2).

From the definition of apply it follows that σ = σ1, s3 = σ2 · s3[2..] and

s3[2..] = apply(p23[2..], s2[2..]). Thus cmpsh reaches case (4) and the induc-

tion hypothesis holds for the recursive application.

■ Subcase p23[1] = nσ2 .

Similarly, from the definition of apply it follows that σ = σ2, s3 = σ2 · s3[2..]

81

and furthermore s3[2..] = apply(p23[2..], s2[2..]). Thus cmpsh reaches case

(3) and the induction hypothesis holds for the recursive application.

■ Subcase p23[1] = xσ2 .

Similarly, from the definition of apply we get that σ = σ2 and s3 = apply(p23[2..], s2[2..]).

Thus cmpsh reaches case (5) and the induction hypothesis holds for the re-

cursive application. □

Recall that the cmpsh returns a string over ΓΣ ∪ {b} while apply first argument is

expected to be a string over ΓΣ. We can convert the string returned by cmpsh to a

string over ΓΣ by simply removing the b symbols. To make this precise we introduce

the function h : ΓΣ ∪ {b} → ΓΣ defined as follows h(γ) = ε if γ = b and h(γ) = γ

otherwise; and its natural extension h : (ΓΣ ∪ {b})∗ → Γ∗
Σ defined as h(γ1γ2 · · · γn) =

h(γ1)h(γ2) · · ·h(γn).

We are now ready to state that cmpsh fulfills its task, namely if it returns p13 then

h(p13) is an edit path from s1 to s3 and its weight and length satisfy Equation 6.3.1

and Equation 6.3.2. Note that even if p12 and p23 are optimal, h(p13) is not necessarily

an optimal path from s1 to s3. Our claim is that it is better than going through s2.

Proposition 6.3.4 Let s1, s2, s3 ∈ Σ∗ and p12, p23 be edit paths, such that apply(p12, s1) =

s2, apply(p23, s2) = s3. Let p13 = cmpsh(p12, p23). Let d∗ = wgt(p∗) and l∗ = len(p∗)

for ∗ ∈ {12, 23, 12}. Then the following holds

1. apply(h(p13), s1) = s3

2. d13 ≤ d12 + d23

3. l13 ≥ max{l12, l23}

82

Proof. The proof is by structural induction on cmpsh. For the base case, we have

that p12 = p23 = ε. Then p13 = ε, by definition of apply we get that s1 = s2 = s3 = ε.

Thus

1. apply(h(p13), s1) = apply(ε, ε) = ε = s1 = s3

2. and 3. we have that d13 = 0 ≤ d12 + d23 = 0 and l13 = 0 ≥ max{l12, l23} = 0

For the induction steps, we have p12 ̸= ε or p23 ̸= ε. Recall that p13 = cmpsh(p12, p23).

Thus, from Lemma 6.3.3 we can conclude p13 is a string over ΓΣ∪{b}. Let s′∗ = s∗[2..],

p′∗ = p∗[2..], d
′
∗ = wgt(p′∗), l

′
∗ = len(p′∗) for ∗ ∈ {12, 23, 13}. The proof proceeds with

the case analysis of cmpsh, going over cases (1)-(11) of Definition 6.3.2.

(1) Here p12[1] = xσ.

Then from apply we have s1 = σ·s′1, from definition of cmpsh we have p13 = xσ ·p′13

Since s2 = apply(p12, s1) = apply(xσ·p′12, σ·s′1) = apply(p′12, s
′
1) and apply(p23, s2) =

s3, by applying the induction hypotheses on s′1, s2, s3 we get

1. apply(h(p′13), s
′
1) = s3

2. d′13 ≤ d′12 + d23

3. l′13 ≥ max{l′12, l23}

Therefore

1. apply(h(p13), s1) = apply(xσ · h(p′13), σ · s′1) = apply(h(p′13), s
′
1) = s3

2. d13 = 1 + d′13 ≤ 1 + d′12 + d23 = d12 + d23

3. l13 = 1 + l′13 ≥ 1 + max{l′12, l23} ≥ max{1 + l′12, l23} = max{l12, l23}.

(2) Here p23[1] = vσ.

Then from apply we have s3 = σ·s′3, from definition of cmpsh we have p13 = vσ·p′13.

Since apply(p23, s2) = apply(vσ · p′23, s2) = σ · apply(p′23, s2) = s3 = σ · s′3 we get

apply(p′23, s2) = s′3 and apply(p12, s1) = s2, by applying the induction hypotheses

83

on s1, s2, s
′
3 we get

1. apply(h(p′13), s1) = s′3

2. d′13 ≤ d12 + d′23

3. l′13 ≥ max{l12, l′23}.

Therefore

1. apply(h(p13), s1) = apply(vσ ·h(p′13), s1) = σ ·apply(h(p′13), s1) = σ ·s′3 =

s3

2. d13 = 1 + d′13 ≤ d12 + 1 + d′23 = d12 + d23

3. l13 = 1 + l′13 ≥ 1 + max{l12, l′23} ≥ max{l′12, 1 + l23} = max{l12, l23}.

(3) Here (p12[1], p23[1]) = (nσ, nσ).

From the definition of cmpsh we have p13 = nσ · p′13 and from apply we have

apply(p12, s1)= apply(nσ · p′12, σ · s′1) = σ · apply(p′12, s′1) = σ · s′2 = s2 and

apply(p23, s2) = apply(nσ · p′23, σ · s′2) = σ · apply(p′23, s′2) = σ · s′3 = s3.

Since apply(p′12, s
′
1) = s′2 and apply(p′23, s

′
2) = s′3 , by applying the induction

hypotheses on s′1, s
′
2, s

′
3 we get

1. apply(h(p′13), s
′
1) = s′3

2. d′13 ≤ d′12 + d′23

3. l′13 ≥ max{l′12, l′23}.

Therefore

1. apply(h(p13), s1) = apply(nσ · h(p′13), σ · s′1) = σ · apply(h(p′13), s′1) =

σ · s′3 = s3

2. d13 = d′13 ≤ d′12 + d′23 = d12 + d23

3. l13 = 1+ l′13 ≥ 1 +max{l′12, l′23} = max{1 + l′12, 1 + l23} = max{l12, l23}.

(4) Here (p12[1], p23[1]) = (nσ′ , c(σ′,σ)).

84

By definition of compose we get p13 = c(σ′,σ) · p′13. From apply we have

apply(p12, s1) = apply(nσ′ · p′12, σ′ · s′1) = σ′ · apply(p′12, s′1) = σ′ · s′2 = s2 and

apply(p23, s2) = apply(c(σ′,σ) · p′23, σ′ · s′2) = σ · apply(p′23, s′2) = σ · s′3 = s3.

Since apply(p′12, s
′
1) = s′2 and apply(p′23, s

′
2) = s′3, by applying the induction

hypotheses on s′1, s
′
2, s

′
3 we get

1. apply(h(p′13), s
′
1) = s′3

2. d′13 ≤ d′12 + d′23

3. l′13 ≥ max{l′12, l′23}.

Therefore

1. apply(h(p13), s1) = apply(c(σ′,σ) · h(p′13), σ′ · s′1) = σ · apply(h(p′13), s′1) =

σ · s′3 = s3

2. d13 = 1 + d′13 ≤ d′12 + 1 + d′23 = d12 + d23

3. l13 = 1+ l′13 ≥ 1 +max{l′12, l′23} = max{1 + l′12, 1 + l′23} = max{l12, l23}.

(5) Here (p12[1], p23[1]) = (nσ, xσ).

By definition of compose we get that p13 = xσ · p′13. From apply we have

apply(p12, s1) = apply(nσ · p′12, σ · s′1) = σ · apply(p′12, s′1) = σ · s′2 = s2 and

apply(p23, s2) = apply(xσ · p′23, σ · s′2) = apply(p′23, s
′
2) = s3.

Since apply(p′12, s
′
1) = s′2 and apply(p′23, s

′
2) = s3 , by applying the induction

hypotheses on s′1, s
′
2, s3 we get

1. apply(h(p′13), s
′
1) = s3

2. d′13 ≤ d′12 + d′23

3. l′13 ≥ max{l′12, l′23}.

Therefore

1. apply(h(p13), s1) = apply(xσ · h(p′13), σ · s′1) = apply(h(p′13), s
′
1) = s3

2. d13 = 1 + d′13 ≤ d′12 + 1 + d′23 = d12 + d23

85

3. l13 = 1+ l′13 ≥ 1 +max{l′12, l′23} = max{1 + l′12, 1 + l′23} = max{l12, l23}.

(6) Here (p12[1], p23[1]) = (c(σ1,σ2), c(σ2,σ3)).

By definition of compose we get that p13 = c(σ1,σ3) · p′13. From apply we have

apply(p12, s1) = apply(c(σ1,σ2) · p′12, σ1 · s′1) = σ2 · apply(p′12, s′1) = σ2 · s′2 = s2 and

apply(p23, s2) = apply(c(σ2,σ3) · p′23, σ2 · s′2) = σ3 · apply(p′23, s′2) = σ3 · s′3 = s3.

Since apply(p′12, s
′
1) = s′2 and apply(p′23, s

′
2) = s′3 , by applying the induction hy-

potheses on s′1, s
′
2, s

′
3 we get

1. apply(h(p′13), s
′
1) = s′3

2. d′13 ≤ d′12 + d′23

3. l′13 ≥ max{l′12, l′23}.

Therefore

1. apply(h(p13), s1) = apply(c(σ1,σ3) ·h(p′13), σ1 ·s′1) = σ3 ·apply(h(p′13), s′1) =

σ3s
′
3 = s3

2. d13 = 1 + d′13 ≤ 1 + d′12 + d′23 < 1 + d′12 + 1 + d′23 = d12 + d23

3. l13 = 1+ l′13 ≥ 1 +max{l′12, l′23} = max{1 + l′12, 1 + l′23} = max{l12, l23}.

(7) Here (p12[1], p23[1]) = (c(σ1,σ2), xσ2).

By definition of compose we get that p13 = xσ1 · p′13. From apply we have

apply(p12, s1) = apply(c(σ1,σ2) · p′12, σ1 · s′1) = σ2 · apply(p′12, s′1) = σ2 · s′2 = s2 and

apply(p23, s2) = apply(xσ2 · p′23, σ2 · s′2) = apply(p′23, s
′
2) = s3.

Since apply(p′12, s
′
1) = s′2 and apply(p′23, s

′
2) = s3 , by applying the induction hy-

potheses on s′1, s
′
2, s3 we get

1. apply(h(p′13), s
′
1) = s3

2. d′13 ≤ d′12 + d′23

3. l′13 ≥ max{l′12, l′23}.

Therefore

86

1. apply(h(p13), s1) = apply(xσ1 · h(p′13), σ1 · s′1) = apply(h(p′13), s
′
1) = s3

2. d13 = 1 + d′13 ≤ 1 + d′12 + d′23 < 1 + d′12 + 1 + d′23 = d12 + d23

3. l13 = 1+ l′13 ≥ 1 +max{l′12, l′23} = max{1 + l′12, 1 + l′23} = max{l12, l23}.

(8) Here (p12[1], p23[1]) = (c(σ′,σ), nσ).

By definition of compose we get that p13 = c(σ′,σ) · p′13. From apply we have

apply(p12, s1) = apply(c(σ′,σ) · p′12, σ′ · s′1) = σ · apply(p′12, s′1) = σ · s′2 = s2 and

apply(p23, s2) = apply(nσ · p′23, σ · s′2) = σ · apply(p′23, s′2) = σ · s′3 = s3.

Since apply(p′12, s
′
1) = s′2 and apply(p′23, s

′
2) = s′3, by applying the induction

hypotheses on s′1, s
′
2, s

′
3 we get

1. apply(h(p′13), s
′
1) = s′3

2. d′13 ≤ d′12 + d′23

3. l′13 ≥ max{l′12, l′23}.

Therefore

1. apply(h(p13), s1) = apply(c(σ′,σ) · h(p′13), σ′ · s′1) = σ · apply(h(p′13), s′1) =

σ · s′3 = s3

2. d13 = 1 + d′13 ≤ 1 + d′12 + d′23 = d12 + d23

3. l13 = 1+ l′13 ≥ 1 +max{l′12, l′23} = max{1 + l′12, 1 + l′23} = max{l12, l23}.

(9) Here (p12[1], p23[1]) = (vσ, nσ).

By definition of compose we get that p13 = vσ · p′13. From apply we have

apply(p12, s1) = apply(vσ · p′12, s1) = σ · apply(p′12, s1) = σ · s′2 = s2 and

apply(p23, s2) = apply(nσ · p′23, σ · s′2) = σ · apply(p′23, s′2) = σ · s′3 = s3.

Since apply(p′12, s1) = s′2 and apply(p′23, s
′
2) = s′3, by applying the induction

hypotheses on s1, s
′
2, s

′
3 we get

1. apply(h(p′13), s1) = s′3

2. d′13 ≤ d′12 + d′23

87

3. l′13 ≥ max{l′12, l′23}.

Therefore

1. apply(h(p13), s1) = apply(vσ ·h(p′13), s1) = σ ·apply(h(p′13), s1) = σ ·s′3 =

s3

2. d13 = 1 + d′13 ≤ 1 + d′12 + d′23 = d12 + d23

3. l13 = 1+ l′13 ≥ 1 +max{l′12, l′23} = max{1 + l′12, 1 + l′23} = max{l12, l23}.

(10) Here (p12[1], p23[1]) = (vσ1 , c(σ1,σ2)).

By definition of compose we get that p13 = vσ2 · p′13. From apply we have

apply(p12, s1) = apply(vσ1 · p′12, s1) = σ1 · apply(p′12, s1) = σ1 · s′2 = s2 and

apply(p23, s2) = apply(c(σ1,σ2) · p′23, σ1 · s′2) = σ2 · apply(p′23, s′2) = σ2 · s′3 = s3.

Since apply(p′12, s1) = s′2 and apply(p′23, s
′
2) = s′3, by applying the induction

hypotheses on s1, s
′
2, s

′
3 we get

1. apply(h(p′13), s1) = s′3

2. d′13 ≤ d′12 + d′23

3. l′13 ≥ max{l′12, l′23}.

Therefore

1. apply(h(p13), s1) = apply(vσ2 · h(p′13), s1) = σ2 · apply(h(p′13), s1) = σ2 ·

s′3 = s3

2. d13 = 1 + d′13 ≤ 1 + d′12 + d′23 < 1 + d′12 + 1 + d′23 = d12 + d23

3. l13 = 1+ l′13 ≥ 1 +max{l′12, l′23} = max{1 + l′12, 1 + l′23} = max{l12, l23}.

(11) Here (p12[1], p23[1]) = (vσ, xσ).

By definition of compose we get that p13 = b · p′13. From apply we have

apply(p12, s1) = apply(vσ · p′12, s1) = σ · apply(p′12, s1) = σ · s′2 = s2 and

apply(p23, s2) = apply(xσ · p′23, σ · s′2) = apply(p′23, s
′
2) = s3.

88

Since apply(p′12, s1) = s′2 and apply(p′23, s
′
2) = s3, by applying the induction

hypotheses on s1, s
′
2, s

′
3 we get

1. apply(h(p′13), s1) = s′3

2. d′13 ≤ d′12 + d′23

3. l′13 ≥ max{l′12, l′23}.

Therefore

1. apply(h(p13), s1) = apply(h(p′13), s1) = s3

2. d13 = 2 + d′13 ≤ 1 + d′12 + 1 + d′23 = d12 + d23

3. l13 = 2+ l′13 > 1 +max{l′12, l′23} = max{1 + l′12, 1 + l′23} = max{l12, l23}.

□

Recall that cost is defined as wgt divided by len. Let p13 be the string obtained by

compose in Proposition 6.3.4. Then by items 2 and 3 we know that

wgt(p13) ≤ wgt(p12) + wgt(p23) (6.3.3)

len(p13) ≥ max{len(p12), len(p23)} (6.3.4)

We can thus conclude from Lemma 6.3.10 that the cost of the path obtained by cmpsh

is at most the sum of the costs of the edit paths from which it was obtained, as stated

in the following corollary.

Corollary 6.3.5 Let s1, s2, s3 ∈ Σ∗ and p12, p23 be edit paths, such that apply(p12, s1) =

s2, apply(p23, s2) = s3. Let p13 = cmpsh(p12, p23). Then cost(p13) ≤ cost(p12) +

cost(p23).

We are not done yet, since p13 contains b symbols, and thus it is not really an edit path.

89

Let k be the number of b’s in p13. Then wgt(p13) = 2k+wgt(h(p13)) and len(p13) = 2k+

len(h(p13)), applying 2k times Lemma 6.3.9, we conclude that wgt(p13)
len(p13)

≥ wgt(h(p13))
len(h(p13))

.

Corollary 6.3.6 cost(p) ≥ cost(h(p))

Proposition 6.3.7 The normalized edit distance obeys the triangle inequality.

Proof. Let s1, s2, s3 ∈ Σ∗ and p12, p23 be optimal edit paths. That is, apply(p12, s1) =

s2 and apply(p23, s2) = s3 and ned(s1, s2) = cost(p12) and ned(s2, s3) = cost(p23).

Let p13 = cmpsh(p12, p23). From Corollary 6.3.5 we get that cost(p13) ≤ cost(p12) +

cost(p23). From Proposition 6.3.4 it holds that h(p13) is a valid edit path over ΓΣ.

From Corollary 6.3.6 we get that cost(h(p13)) ≤ cost(p13). By definition of ned as it

chooses the minimal cost of an edit path, ned(s1, s3) ≤ cost(h(p13)). To conclude, we

get ned(s1, s3) ≤ ned(s1, s2) + ned(s2, s3). □

Theorem 6.8 The Normalized Levenshtein Distance ned (provided in Definition 6.2.1)

with uniform costs (i.e., where the cost of all inserts, deletes and swaps are some con-

stant c) is a metric on the space Σ∗.

Proof. The first two conditions of being a metric follow from Proposition 6.3.1. The

third condition, namely triangle inequality, follows from Proposition 6.3.7. □

6.3.2 Properties of fractions

Lemma 6.3.9 If d ≤ l then d+1
l+1
≥ d

l

Proof. d+1
l+1

= l(d+1)
l(l+1)

≥ d(l+1)
l(l+1)

= d
l
. □

Lemma 6.3.10 If d13 ≤ d12 + d23 and l13 ≥ max{l12, l23} then d12
l12

+ d23
l23
≥ d13

l13
.

Proof. d13
l13
≤ d12+d23

l13
= d12

l13
+ d23

l13
≤ d12

l12
+ d23

l23
. □

90

6.4 Properties of the various normalized edit dis-

tance functions

The alignment view Recall that distance functions defined by dividing the weight

by the sum, max or min of the given strings does not yield a metric[MV93, dlHM08].

The main contribution of the chapter is to show that the choice to use the length of

the edit path in the denominator, makes the resulting definition, ned, a metric. To

understand the motivation behind dividing by the length of the edit path, note that

an edit path can be thought of as defining an alignment between the given words s1

and s2 by padding the first string with some blank symbol, denote it , whenever an

insert operation is conducted, and padding the second string with symbols whenever a

delete operation is conducted. The resulting words s′1 and s′2 would thus be of the same

length, and the weight of the edit path would correspond to the Hamming distance

between the words. (The Hamming distance applies only to words of same length and

counts the number of positions i in which the two words differ.) When dealing with

words of the same length it makes sense to normalize them by dividing by their length,

and the length of the padded words equals the length of the edit paths.

Example 6.4.1 In Example 6.2.2 we used s1 = acbb, s2 = cc. The edit path xnxc

corresponds to the alignment s′1 = acbb and s′2 = c c, and since the length of s′1 and

s′2 is 4 and they differ in all positions but one the corresponding cost is 3/4.

In Example 6.1.1, we used w1 = abcd and w2 = badee and considered the edit path

xncnvv. This path correspond to the alignment w′
1 = abcd and w′

2 = badee. Since

w′
1 and w′

2 differ in four out of the six positions, we have that the cost of this path is

4/6.

91

6.4.1 Other edit distance functions

In the introduction we mentioned several edit distance functions known to be a metric.

We use the term edit distance for functions between words to values that are based on

delete, insert and swaps. In general these definition may allow arbitrary wgt assignment

to edit letters, but we consider the case of uniform weights. We start by introducing the

edit distance functions, ed, ged, and ced, and then turn to compare their properties,

with those of ned.

We start with the commonly used edit distance, introduced by Levenstein [Lev66].

Definition 6.4.2 (The edit (Levenstein) distance, ED) The edit distance be-

tween si and sj, denoted ed(si, sj), is the minimal weight of a path pij from si to

sj. That is,

ed(si, sj) = min {wgt(pij) | pij ∈ Γ∗
Σ and apply(pij, si) = sj}

This function is a metric, but it completely ignores the lengths of the words, thus it is

not normalized.

The post-normalized edit distance divides the weight by the sum of the length of the

words. Likewise one can consider definitions which use the min or max of the lengths.

These three definitions were introduced just to show they are not a metric [MV93,

dlHM08].

Definition 6.4.3 (pedsum, pedmin, pedmax) Let si and sj be strings.

pedsum(si, sj) = min

{
wgt(pij)

|si|+ |sj|

∣∣∣∣ apply(pij, si) = sj

}

92

pedmin(si, sj) = min

{
wgt(pij)

min(|si|, |sj|)

∣∣∣∣ apply(pij, si) = sj

}

pedmax(si, sj) = min

{
wgt(pij)

max(|si|, |sj|)

∣∣∣∣ apply(pij, si) = sj

}

It was shown in [MV93] that pedsum does not satisfy the triangle inequality, and

in [dlHM08] that pedmin and pedmax do not satisfy the triangle inequality either.

Example 6.4.4 Let Σ = {a, b, c, d}.

• Let s1 = aa, s2 = ab and s3 = b. Using the uniform weights, we have that

pedsum(s1, s2) =
1
4
, pedsum(s2, s3) =

1
3
, pedsum(s1, s3) =

2
3
but 1

4
+ 1

3
= 7

12
< 2

3
.

Thus, the triangle inequality does not always hold.

• Let s1 = abc, s2 = abcd and s3 = bdd. Using the uniform weights, we have that

pedmin(s1, s2) =
1
3
, pedmin(s2, s3) =

2
3
, pedmin(s1, s3) =

4
3
but 1

3
+ 2

3
= 1 < 4

3
.

Thus, the triangle inequality does not always hold.

• Let s1 = ab, s2 = aba and s3 = ba. Using the uniform weights, we have that

pedmax(s1, s2) =
1
3
, pedmax(s2, s3) =

1
3
, pedmax(s1, s3) =

2
2
= 1 but 1

3
+ 1

3
= 2

3
<

1. Thus, the triangle inequality does not always hold.

We turn to introduce the generalized normalized edit distance proposed and proven to

be a metric by Li and Liu [LL07].

Definition 6.4.5 (The generalized edit distance) ged(si, sj) =
2·ed(si,sj)

|si|+|sj |+ed(si,sj)
.

Last, we define of the contextual edit distance, proposed and proven to be a metric

by de la Higuera and Micó [dlHM08]. It starts with a definition of distance between

two strings whose Levenstein distance is 1, from which it builds the distance for an

arbitrary set of words, by looking at a sequence of intermediate transformations.

93

Definition 6.4.6 (The contextual edit distance) Let s, s′ be such that

ed(s, s′) = 1, their contextual edit distance is defined by ced(s, s′) = 1
max(|s|,|s′|) . Note

that given ed(s, s′) = 1 the difference between the lengths of s and s′ is at most one,

thus max(|s|, |s′|) ≤ min(|s|, |s′|) + 1.

Given a sequence of strings α = (s0, s1, . . . , sk) such that ed(si, si+1) = 1 for all 0 ≤ i <

k, one can define ced(α) =
∑k

i=1 ced(si−1, si). To define the contextual edit distance

between arbitrary strings sx and sy one considers the minimum of ced(α) among all

sequence of strings α = s0, s1, . . . , sk as above such that s0 = sx, sk = sy. That is,

ced(sx, sy) = min

{
ced(α)

∣∣∣∣ α = (s0, s1, . . . , sk), s0 = sx, sk = sy, ed(si, si+1) = 1

}

6.4.2 Comparison to other edit distance functions

Comparing ned and ed is easy. The ned distance (like ced and ged) measures the

average number edits, not just the total count. To see why this is needed, consider two

short words x1, x2 that differ in k letters and two long word y1, y2 that also differ in k

letters. In the context of software verification, for example, the latter represent runs

that are more similar to one another than the former. We thus, expect the distance

between y1 and y2 to be less than the distances between the x1 and x2 but this is not

the case for ed, as can be observed by the following examples.

ed(aabcde, abpcg) = 4 ned(aabcde, abpcg) = 4/7

ed(a96b4, a100) = 4 ned(a96b4, a100) = 4/100

We turn to a comparisons of ned with the other normalized edit distances, ged and

ced. Usually, being normalized means that the values of the distance functions are

94

bounded within a given range, but this is not always the case. The lower bound is

clearly 0 for ned, ged, and ced, since they are metric. The upper value of ned and

ged is 1 but the values for ced are not bounded:

Claim 6.4.7 The values of ned and ged cannot exceed 1 and may reach 1, the values

of ced are unbounded.

Proof. For ned the numerator is the weight of an edit path, which is always smaller

than the denominator which is the length of the edit path, thus ned(w1, w2) ≤ 1 for

all w1, w2 ∈ Σ∗. Since ned(ε, a) = 1 the upper bound is 1.

For ged the numerator is twice the weight of the edit path, and the denominator is

once the weight of the edit path, plus the sum of length of the strings which is at least

the size of the edit path, thus clearly at least the weight of the edit path. This shows

ged cannot exceed 1. The fact that ged(ε, a) = 1 shows that 1 is the upper bound.

To see why ced is not bounded consider the sequence of words {ai}i∈N. That is, the

sequence ε, a, aa, aaa, We have that ced(ε, ai) = 1+ 1
2
+ 1

3
+. . .+ 1

i
. Thus ced(ε, ai)

is the sum of the Harmonic sequence up to the ith element, and since the Harmonic

sequence diverges, ced is unbounded. □

The second property of metrics that we consider, recall that the first requirements of

a metric, identity of indiscernibles, is that d(s1, s2) = 0 if and only if s1 = s2. That

is, the distance between two strings (in our case) is zero if and only if it is the exact

same string. In the case of strings, when working with a normalized distance with an

upper bound 1, we expect the distance to be 1, the maximal possible, if the strings are

completely different, namely they do not have any letter in common, that is, for all

σ ∈ Σ if σ appears in s1 it does not appear in s2 and vice versa. In software verification,

95

for example, this means that the system produced a run that is completely unrelated

to the specification, thus we expect the distance to be 1, indicating it is as far away as

possible from the specification.

Since ced is unbounded, we consider for the purpose of the next property, a slightly

different version, that we call ced’, defined as ced’(s1, s2) = min(1,ced(s1, s2)).
1

Property 6.4.8 (max variance of antitheticals) Let d : Σ∗×Σ∗ → [0, 1] be an edit

distance function. We say that d has the property of max variance of antitheticals if

d(s1, s2) = 1 if and only if s1 and s2 have no letter in common.

We show that ned has this property while ged and ced’ do not.2

Claim 6.4.9 The property of max variance of antitheticals holds for ned, but does

not hold for ged and ced’.

Proof. Consider aa and bb. Since they have no common letter, we expect their distance

to be 1. The fact that ged(aa, bb) = 2/3 shows that ged violates the property of max

variance of antitheticals.3 Consider a and aaaa. Since they do have a common letter,

we expect their distance to be strictly less than 1. The fact that ced′(a, aaaa) = 1

shows that ced’ violates the property of max variance of antitheticals.

To see that ned has this property, note that it results in a value of 1 iff the numerator

equals the denominator, i.e., the weight of the edit path is the same as its length;

1This is inspired by [Lit19] that explains this choice as follows: “This measure is not normalized
to a particular range. Indeed, for a string of infinite length and a string of 0 length, the contextual
normalized edit distance would be infinity. But so long as the relative difference in string lengths is
not too great, the distance will generally remain below 1.0”.

2Note that extending this property to require that d(s1, s2) equals the maximal value (be it 1 or
more) only for antitheticals, so that it can be applied to the original ced, would not make ced satisfy
it since ced(ε, a) = 1 <∞.

3We note that, moreover, ged(aab, b) is also 2/3 though we expect ged(aab, b) < ged(aa, bb)
since the average number of edits is smaller in the first case.

96

which holds iff there are no edit letters with weight zero. Since the only zero weight

edit letter is swap of identical letters, the value of ned is 1 if and only if the words

have no common letter. □

It is note worthy to notice that ged takes into consideration difference in sizes (the

addition of length of words) while ned only takes into consideration the length of the

edit-path (which is between the maximal word and the sum of both words)

ged(a, b100) = 200
201

ned(a, b100) = 1

ged(ai, bj) = 2·max{i,j}
i+j+max{i,j} ned(ai, bj) = 1

For the third metric comparison property, consider two words u and v and suppose

d(u, v) = c for the concerned edit distance function d. When considering normalized

edit distance, we expect that d(ui, vi) will not exceed c since by repeating i times the

edit operations for transforming u into v we should be able to transform ui into vi

and the ‘average’ number of edits will not change. It could be that when considering

the longer words ui and vi there is a better sequence of edits, thus we do not expect

equality. As before, our motivation for requiring this property comes from software

verification. Specifically, when considering periodic runs, generated, e.g., by code with

loops, one would expect that the distance between the periodic runs is not larger than

the distance between the periods because an error that repeats regularly should only

be counted once in a normalized measure that models average error rate.

Property 6.4.10 (Non escalation of repetitions) Let d be an edit distance func-

tion. Let u, v ∈ Σ∗. If d(uk, vk) ≤ d(u, v) for any k > 1 we say that d does not escalate

repetitions.

97

Claim 6.4.11 The ned and ged distances satisfy the property of non escalation of

repetitions. The ced and ced’ distances do not.

Proof. Consider u = aab and v = aaab. The following shows that ced and ced’

escalate repetitions.

ced((aab)1, (aaab)1) = 1
4
= 0.25

ced((aab)2, (aaab)2) = 1
7
+ 1

8
= 15

56
= 0.2678

ced((aab)3, (aaab)3) = 1
10

+ 1
11

+ 1
12

= 181
660

= 0.2742

To see that ned does not escalate repetitions, assume puv is an optimal edit path

transforming u to v. Since (puv)
k, the edit path obtained by repeating k times puv, is

an edit path transforming uk to vk:

ned(uk, vk) ≤ k·wgt(puv)
k·len(puv) = wgt(puv)

len(puv)
= ned(u, v).

The same reasoning shows that ged does not escalate repetitions.

ged(uk, vk) ≤ 2k·ed(u,v)
k(|u|+|v|)+k·ed(u,v) =

2·ed(u,v)
|u|+|v|+ed(u,v)

= ged(u, v).

□

The last property we consider is referred to as pure uniformity of operations. While

we assume the weights of delete, insert and substitution are uniform, the resulting edit

distance function may not be purely uniform, in the following sense. Consider two

strings s1 and s2 such that s1 is shorter than s2. Then to transform s1 to s2 we would

need some insertion operations. Consider now a word s′1 that is longer than s1 but

not longer than s2 and is obtained by padding s1 with some new letter σnew in some

98

arbitrary set of positions. Since insert and substitution weigh the same, we expect

d(s1, s2) to be equal to d(s′1, s2).

To define this formally we use the following notations. Let Σ′ ⊆ Σ and s ∈ Σ∗ we

use πΣ′(s) for the string obtained from s by leaving only letters in Σ′. For instance, if

Σ = {a, b, c} and s = abcbacc then π{a,b} = abba.

Property 6.4.12 (pure uniformity) Let Σ,Σ1,Σ2 be disjoints alphabets, and let s1, s2 ∈

Σ∗. We call d purely uniform if

d(s1, s2) = min {d(s′1, s′2) | s′i ∈ (Σ ⊎ Σi)
∗ and πΣ(s

′
i)=si for i ∈ {1, 2}} .

We can now show that ned satisfies this property while ged and ced do not.

Claim 6.4.13 The ned distance is purely uniform. The ged and ced distances are

not.

Proof. To see why ged and ced are not purely uniform consider the words s1 = a50,

s2 = a100 and s′1 = a50c50 and note that π{a,b}(s
′
1) = s1. We have that ged(a50, a100) =

2 ·50/(150+50) = 1/2 whereas ged(a50c50, a100) = 100/(200+100) = 1/3. Considering

ced, we have that ced(a50, a100) =
∑100

i=51
1
i
≈ 0.68817 whereas ced(a50c50, a100) =∑100

i=51
1

100
= 0.5. Since all values are below 1, the same is true for ced’.

To show that ned is purely uniform we first note that s1, s2 ∈ Σ∗ implies s1, s2 are in

(Σ ⊎ Σ1)
∗ and (Σ ⊎ Σ2)

∗, respectively, thus the ≥ direction of the equality in Prop-

erty 6.4.12 clearly holds. For the ≤ direction, we turn to Claim 6.4.14 below, which es-

sentially formalized the intuition provided regarding the alignment view of ned. Thus,

given s′1 and s′2 establishing the min in the RHS of Property 6.4.12, and p′ ∈ Γ∗ an edit

path transforming s′1 into s′2, we can build an edit path p ∈ Γ∗ transforming πΣ(s
′
1)

99

into πΣ(s
′
2) such that cost(p) ≤ cost(p′). This shows that ned(s1, s2) ≤ ned(s′1, s

′
2) for

every such s′1, s
′
2. Thus ned satisfies the pure uniformity property. □

Claim 6.4.14 Let Σ,Σ1,Σ2 be disjoints nonempty alphabets. Let s′1 ∈ Σ ⊎ Σ1 and

s′2 ∈ Σ ⊎ Σ2 and p′ an edit path transforming s′1 to s′2. There exists an edit path p

transforming πΣ(s
′
1) to πΣ(s

′
2) such that cost(p) ≤ cost(p′).

Proof. Let γ ∈ Γ, p′ ∈ Γ∗
Σ∪⊎Σ1⊎Σ2

. We define f : ΓΣ⊎Σ1⊎Σ2 → ΓΣ as follows

f(γ) =

lσ if γ = lσ for some l ∈ {v, x, n} and σ ∈ Σ

cσ,σ′ if γ = cσ,σ′ and σ, σ′ ∈ Σ

vσ if γ = cσ1,σ and σ1 ∈ Σ1, σ ∈ Σ

xσ if γ = cσ,σ2 and σ ∈ Σ, σ2 ∈ Σ2

ε otherwise

Let p = f(p′) where f : Γ∗
Σ⊎Σ1⊎Σ2

→ Γ∗
Σ is the natural extension of f defined by

f(γ1 . . . γm) = f(γ1) . . . f(γn).

It is not hard to see that p is an edit path from πΣ(s
′
1) to πΣ(s

′
2). Since all removed

edit operations have cost 1 we get from Lemma 6.3.9 that cost(p) ≤ cost(p′) □

100

Chapter 7

Discussion and Conclusions

This thesis presents a natural extension of the normalized edit distance (denoted ned)

from finite words to infinite words (which we denote ω-ned) and shows that this exten-

sion is a metric. To the best of our knowledge this is the first edit distance over infinite

words known to be a metric. We show that the ω-ned distance between two ultimately

periodic words can be computed in Ptime. We further investigate how to compute the

ω-distance between two ω-regular languages. We provide algorithms that answer this

question, when the languages are represented using (non-deterministic) Büchi, Parity

or Muller automata, models that are commonly used in verification.

In the process of proving ω-ned is a metric, we came across an open question —

whether the well know normalized edit distance ned used with uniform weights is a

metric (on finite words). We closed this gap by providing a proof that indeed it satisfies

the triangle inequality.

For future work we think it would be interesting to check if our linear t bound (Lemma 4.5.3)

for which µt = µ∗ is optimal, and if not, find a tighter bound. We would like to inves-

101

tigate computational complexity of ω-ned with regard to other computational models

(such as pushdown automata).

The notion of distance between languages has been rigorously studied in the for-

mal methods community, in particular as means for answering questions related to

quality of implementations, robustness, and repair (see [CHR10, BPR11, CHR12,

CHOV17, NWZ19, FMR+20] to name a few). Most of these works define the dis-

tance between languages in a different way than we do. While we define d(L1, L2) as

infw1∈L1,w2∈L2 d(w1, w2) these works define d(L1, L2) as supw1∈L1
infw2∈L2 d(w1, w2). Our

definition follows the standard way to extend a definition of a metric from elements

to sets. Their definition, which is not a metric (for instance since it is not symmetric)

builds on other motivation, it looks for the worst-case number of operations needed

to get from L1 to L2. For future work we would like to consider the various other

questions regarding distances in formal verification (e.g. the threshold distance, the

correctness distance, the robustness distance), and devise algorithms for solving them

for ω-ned.

102

Bibliography

[Ber79] Jean Berstel. Transductions and context-free languages, volume 38 of Teub-

ner Studienbücher : Informatik. Teubner, 1979.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT

Press, 2008.

[BPR11] Michael Benedikt, Gabriele Puppis, and Cristian Riveros. Regular repair

of specifications. In Proceedings of the 26th Annual IEEE Symposium

on Logic in Computer Science, LICS 2011, June 21-24, 2011, Toronto,

Ontario, Canada, pages 335–344, 2011.

[CDH10] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quan-

titative languages. ACM Trans. Comput. Log., 11(4):23:1–23:38, 2010.

[CGK+18] Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled,

and Helmut Veith. Model checking, 2nd Edition. MIT Press, 2018.

[CHOV17] Krishnendu Chatterjee, Thomas A. Henzinger, Jan Otop, and Yaron Vel-

ner. Quantitative fair simulation games. Inf. Comput., 254:143–166, 2017.

[CHR10] Pavol Cerný, Thomas A. Henzinger, and Arjun Radhakrishna. Quanti-

tative simulation games. In Zohar Manna and Doron A. Peled, editors,

103

Time for Verification, Essays in Memory of Amir Pnueli, volume 6200 of

Lecture Notes in Computer Science, pages 42–60. Springer, 2010.

[CHR12] Pavol Cerný, Thomas A. Henzinger, and Arjun Radhakrishna. Simulation

distances. Theor. Comput. Sci., 413(1):21–35, 2012.

[DG08] Volker Diekert and Paul Gastin. First-order definable languages. In Logic

and Automata: History and Perspectives [in Honor of Wolfgang Thomas],

pages 261–306, 2008.

[dlHM08] Colin de la Higuera and Luisa Micó. A contextual normalised edit distance.

In Proceedings of the 24th International Conference on Data Engineering

Workshops, ICDE 2008, April 7-12, 2008, Cancún, Mexico, pages 354–

361. IEEE Computer Society, 2008.

[EF06] Cindy Eisner and Dana Fisman. A Practical Introduction to PSL. Series

on Integrated Circuits and Systems. Springer, 2006.

[FGMW22] Dana Fisman, Joshua Grogin, Oded Margalit, and Gera Weiss. The nor-

malized edit distance with uniform operation costs is a metric, 2022. sub-

mitted to CPM, the 33rd Annual Symposium on Combinatorial Pattern

Matching.

[FGW22] Dana Fisman, Joshua Grogin, and Gera Weiss. A normalized edit distance

on infinite words, 2022. submitted to LICS, the Thirty-Seventh Annual

ACM/IEEE Symposium on Logic in Computer Science.

[FMR+20] Emmanuel Filiot, Nicolas Mazzocchi, Jean-François Raskin, Sriram

Sankaranarayanan, and Ashutosh Trivedi. Weighted transducers for ro-

104

bustness verification. In 31st International Conference on Concurrency

Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual

Conference), pages 17:1–17:21, 2020.

[HP84] David Harel and Amir Pnueli. On the development of reactive systems.

In Krzysztof R. Apt, editor, Logics and Models of Concurrent Systems -

Conference proceedings, Colle-sur-Loup (near Nice), France, 8-19 October

1984, volume 13 of NATO ASI Series, pages 477–498. Springer, 1984.

[HR86] H. J. Hoogeboom and G. Rozenberg. Infinitary languages: Basic theory

and applications to concurrent systems, pages 266–342. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1986.

[Joh98] Richard Johnsonbaugh. A Discrete Intermediate Value Theorem. https:

//www.maa.org/sites/default/files/0746834259610.di020780.02p

0372v.pdf, 1998. The College Mathematical Journal.

[Kar78] Richard M. Karp. A characterization of the minimum cycle mean in a

digraph. Discret. Math., 23(3):309–311, 1978.

[Lev66] Vladimir Iosifovich Levenshtein. Binary codes capable of correcting dele-

tions, insertions and reversals. Soviet Physics Doklady, 10(8):707–710, feb

1966. Doklady Akademii Nauk SSSR, V163 No4 845-848 1965.

[Lit19] Christopher C. Little. https://abydos.readthedocs.io/en/latest/ab

ydos.distance.html#abydos.distance.HigueraMico, 2014-2019.

[LL07] Yujian Li and Bi Liu. A normalized levenshtein distance metric. IEEE

Trans. Pattern Anal. Mach. Intell., 29(6):1091–1095, 2007.

https://www.maa.org/sites/default/files/0746834259610.di020780.02p0372v.pdf
https://www.maa.org/sites/default/files/0746834259610.di020780.02p0372v.pdf
https://www.maa.org/sites/default/files/0746834259610.di020780.02p0372v.pdf
https://abydos.readthedocs.io/en/latest/abydos.distance.html#abydos.distance.HigueraMico
https://abydos.readthedocs.io/en/latest/abydos.distance.html#abydos.distance.HigueraMico

105

[MV93] Andrés Marzal and Enrique Vidal. Computation of normalized edit

distance and applications. IEEE Trans. Pattern Anal. Mach. Intell.,

15(9):926–932, 1993.

[NWZ19] Daniel Neider, Alexander Weinert, and Martin Zimmermann. Robust, ex-

pressive, and quantitative linear temporal logics: Pick any two for free. In

Proceedings Tenth International Symposium on Games, Automata, Log-

ics, and Formal Verification, GandALF 2019, Bordeaux, France, 2-3rd

September 2019, pages 1–16, 2019.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium

on Foundations of Computer Science, Providence, Rhode Island, USA, 31

October - 1 November 1977, pages 46–57. IEEE Computer Society, 1977.

[TN16] Paulo Tabuada and Daniel Neider. Robust linear temporal logic. In 25th

EACSL Annual Conference on Computer Science Logic, CSL 2016, August

29 - September 1, 2016, Marseille, France, pages 10:1–10:21, 2016.

[Var95] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic.

In Faron Moller and Graham M. Birtwistle, editors, Logics for Concur-

rency - Structure versus Automata (8th Banff Higher Order Workshop,

Banff, Canada, August 27 - September 3, 1995, Proceedings), volume 1043

of Lecture Notes in Computer Science, pages 238–266. Springer, 1995.

	Introduction
	Formal verification
	Edit distance
	Contributions

	I Normalized edit distance on infinite words
	Preliminaries
	Notations and definitions
	Facts

	A Normalized Edit Distance for Infinite Words
	Extension to infinite words
	-ned is a metric

	The Case of Ultimately Periodic Words

	Computing -ned for Languages of Infinite Words
	Computing -ned for ultimately periodic words
	Computing ned for regular languages
	Computing -ned for Regular -Languages
	Enough to consider two cycles
	Computing *
	Showing -ned(L1,L2)=*
	The algorithm

	Reflecting on the transient part

	II Normalized edit distance on finite words
	The Normalized Edit Distance with Uniform Operation Costs is a Metric
	Representation of edit paths
	Normalized edit distance definition
	Proof of metric
	A Proof of the Triangle Inequality
	Properties of fractions

	Properties of the various normalized edit distance functions
	Other edit distance functions
	Comparison to other edit distance functions

	Discussion and Conclusions
	Bibliography

